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The atomic surfaces modelling technique has been used to

solve the structure of the basic Ni-rich Al±Co±Ni decagonal

phase. Formula Al70.6Co6.7Ni22.7, space group P10, ®ve-

dimensional unit-cell parameters: d1 = d4 = 4.752 (3) AÊ , d2 =

d3 = 3.360 (2) AÊ , d5 = 8.1710 (2) AÊ ; �12 = �34 = 69.295�, �13 =

�24 = 45�, �14 = 41.410�, �23 = �i5 = 90� (i = 1±4), V =

291.2 (7) AÊ 5; Dx = 3.887 Mg mÿ3. Re®nement based on |F|;

2767 unique re¯ections (|F| > 0), 749 parameters, R = 0.17,

wR = 0.06. Describing the structure of quasicrystals embedded

in n-dimensional superspace in principle takes advantage of n-

dimensional periodicity to select the minimal set of degrees of

freedom for the structure. The method of modelling of the

atomic surfaces yielded the ®rst fully detailed structure

solution of this phase. Comparison with numerous former,

less accurate models con®rms several features already derived,

but adds a new essential insight of the structure and its

complexity. The atoms ®ll the space forming recurrent

structure motifs, which we will (generically) refer to as

clusters. However, no unique cluster exists, although differ-

ences are small. Each cluster shows a high degree of structural

disorder. This gives rise to a large con®gurational entropy, as

much as expected in a phase which is stable at high

temperature. On the other side, the cluster spatial arrange-

ment is perfectly quasiperiodic. These considerations, corro-

borated by analysis of the structural relationship with

neighbouring periodic phases, strongly suggest the existence

of a non-local, long-range interaction term in the total energy

which may be essential to the stability.
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1. Introduction

The identi®cation (Zhang, 1995; Zhang, Estermann & Steurer,

1995) of the basic Ni-rich decagonal Al±Co±Ni phase has

created widespread scienti®c interest and is a subject of

intensive study. The detailed characterization of its complex

structure is an enormous work and it has only been possible by

collecting and comparing all the previous work, which we duly

acknowledge throughout the paper. The atomic surface

modelling technique (Cervellino, 2001) has been applied

before to icosahedral Al±Cu±Fe (Katz & Gratias, 1994) and,

very recently, to decagonal Al±Co±Ni (Takakura et al., 2001),

both based on rather small data sets. Applying the same

technique, and using a large high-resolution synchrotron data

set, we are able to present here a high-quality crystal structure

solution.

A Copernican revolution in the understanding of quasi-

periodic long-range order is underlined: all previous models



are based on the (regular or random) ordering of some well

de®ned, ordered atomic cluster.1 Although we can clarify the

regularity of the disposition and con®rm the existence of a

basic atomic cluster, the nature of the latter is de®ned only as a

statistical object. In fact, we ®nd that the majority of atomic

sites in such a cluster are only partially occupied; moreover,

several slightly different variants of such a basic unit exist. In

synthesis, we have a regular arrangement of irregular building

blocks.

The plan of the paper is as follows. In the remainder of this

section, we will present all the necessary background infor-

mation, characterizing this quasicrystal in its phase diagram, in

reciprocal space and in direct space. In x2 we describe the

structure model we used and present the results of its re®ne-

ment. x3 contains a comparative discussion of all previously

issued structure models. x4 is dedicated, ®nally, to the discus-

sion of the relation between the structure as solved and the

stability of the decagonal phase.

1.1. The Al±Co±Ni system

A stable decagonal quasicrystal (d-QC hereafter) in the Al±

Co±Ni system has been ®rst identi®ed by Tsai et al. (1989). The

Al±Co±Ni phase diagram has successively been thoroughly

explored (GoÈ decke & Ellner, 1996, 1997; GoÈ decke, 1997;

Scheffer et al., 1998; GoÈ decke et al., 1998) and different d

phases as well as periodic approximants have been found (see

Zhang, 1995; Ritsch, 1996; Baumgarte et al., 1997; Zhang et al.,

1997; Ritsch et al., 1998, and references therein).

1.1.1. Quasicrystal-related Al-rich Al(Co,Ni) periodic
phases. The relational analysis of QCs and approximants2 is

universally acknowledged as a key topic to understand

quasiperiodicity. We introduce here a functional classi®cation

of periodic approximants to which we will refer in the

following.

(i) Large-unit-cell (LUC) approximant phases: These are

approximants in the strict sense (Steurer & Haibach, 1999a).

They have been object of considerable study, in particular

those with a large enough unit cell (>400� c10 AÊ 3, c10 being

the period along the pseudo-decagonal axis) to contain

properly formed QC structure motifs, in particular 20 AÊ

diameter decagons (broadly discussed later). In fact, these

approximants form characteristic in¯ation series with

increasing lattice parameters, tending asymptotically to the

corresponding QC. They seem to be thermodynamically stable

only at high temperature, grossly in the same range of QC,

which is possibly the high-temperature thermodynamic equi-

librium. In relation to d-Al±Co±Ni, known examples are

Al70Co15Ni15 (Grushko et al., 1998; Estermann et al., 2000;

Lemster, 2001) and �2-Al13Co4 (Ma & Kuo, 1994; Ma et al.,

1995; Saitoh, Yokosawa et al., 1999; Lemster, 2001). It is

presently understood that they are structurally very similar to

d-QC's of corresponding composition, up to hypothesizing

crystal±QC reversible phase transitions. Intermediate stages of

such phase transitions have been observed and their possible

mechanism has been thoroughly discussed (Estermann et al.,

1994; Kalning et al., 1994, 1995, 1997; Ritsch, 1996; Honal et al.,

1998; Steurer & Haibach, 1999b; Steurer, 1999b, 2000).

However, high-quality structure solutions are not yet avail-

able, due to large disorder and sheer complexity. Therefore,

we cannot presently use them for structure comparison.

(ii) Small unit-cell periodic phases with pentagonal motifs

(PM phases): Several binary and ternary small unit-cell Al-

rich phases (Vcell < 400� c10 AÊ 3) are known which contain

pentagonal atomic motifs, closely related to those in the d

phases. However, there are also important structural differ-

ences, as will be discussed. The most important are Al13TM4,

with TM = Co,(Co,Ni) or Fe (Hudd & Taylor, 1962; Grin et al.,

1994a; Freiburg et al., 1996; Zhang, Gramlich & Steurer, 1995);

Al11Co4 (Li, Shi et al., 1995); Al9Co2Ni (Grin et al., 1998);

Al5Co2 (Burkhardt et al., 1998; Yamamoto et al., 1999).

Comparative structural discussions about structure motif

relations with d-Al±Co±Ni are found in Zhang (1995), Cock-

ayne & Widom (1998a), Steurer (2001b) and MihalkovicÏ et al.

(2001). Thermodynamically and chemically, PM phases differ

from Ni-rich d-Al±Co±Ni. In fact, many PM phases are ther-

modynamically stable at ambient temperature; furthermore, in

their composition nickel is minor or absent.

(iii) Small unit-cell vacancy-ordered periodic phases related

to d-Al±Co±Ni as its periodic average structure (VOPAS

phases). The concept of periodic average structure (PAS),

which allows the inclusion of QCs in the world of incom-

mensurately modulated structure, is explained in Steurer &

Haibach (1999b), Steurer (1999a, 2000). Recently we have

shown (Steurer & Cervellino, 2001) the importance of the

QC±PAS relation in d-Al70.6Co6.7Ni22.7. The PAS referred to as

AS±2 in Steurer & Cervellino (2001) is the (CsCl type) �-

phase AlNi. This phase accepts a large number of Ni-site

vacancies, up to the composition Al62Ni38 (Bradley & Taylor,

1937a). Vacancy-ordering (VO) explains various super-

structures (Al4Ni3, Ellner et al., 1989; Al3Ni2, Dong, 1989).

Notably, also, the surface of d-Al±Co±Ni transforms uniformly

into the �-phase after ion irradiation (Zurkirch et al., 1998).

1.1.2. Al±Co±Ni decagonal phases. Al±Co±Ni d-phases are

periodic with a 4 AÊ period along the decagonal axis and

quasiperiodic in planes orthogonal thereto. Structurally, there

are two equispaced atomic layers per period.

d-Phases are found at 70±73 at.% Al, with 0±25 at.% Ni [d-

Al73Co27 (Ma & Kuo, 1994; Saitoh et al., 1994; Saitoh, Yoko-

sawa et al. 1999) is only metastable]. It has been established

(Zhang, 1995; Ritsch, 1996; Ritsch et al., 1996; Zhang et al.,

1997; Baumgarte et al., 1997) that at low Co content (6±8%) a

d-phase exists, stable at high temperature (�1123±1323 K). It

presents the simplest diffraction pattern (basic d-phase).

Other d-phases, thermodynamically stable in lower tempera-

ture ranges (�973±1273 K, possibly less) and with a higher Co
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1 For reasons of conciseness, the term `cluster' is used throughout this work
with the generalized (and substantially geometric) meaning of `structure
motif' or `quasi-unit-cell decoration' (Jeong & Steinhardt, 1997). In its usual,
more restrictive, crystal-chemical acception, this term would not be justi®ed
because the inter-cluster and intra-cluster atomic bonds do not differ in any
way.
2 We employ this term in the broad meaning of `periodic phases possessing
chemical, physical and structural similarities with a QC'. A more restrictive
de®nition is often used, based on lattice metrics (Steurer & Haibach, 1999a).
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content, can be classi®ed as its superstructures, the best

characterized being the Edagawa phase (Edagawa et al., 1992;

Haibach et al., 1999) at �15 at.% Co. Other superstructures

are found at higher Co content (Yamamoto et al., 1990; Hiraga

et al., 1991; Steurer & Frey, 1993; Zhang, 1995; Ritsch, 1996;

Ritsch et al., 1998, 1999; Hiraga et al., 2000). Enrichment in Co

progressively lowers the structural symmetry.

All d-Al±Co±Ni phases show a fair amount of diffuse

scattering. Especially noticeable are diffuse layers orthogonal

to the tenfold axis with half-integer index. They appear very

sharp in the tenfold axis direction, with coherence lengths

superior to 300 AÊ (Steurer & Frey, 1993, 1998). The diffuse

interlayers hint to a doubling of the translational period from

4 to 8 AÊ . In the basic phase this phenomenon is minimized and

not apparently structured (Baumgarte et al., 1997). Neither

Bragg peaks nor structured diffuse phenomena can be

observed in the half-integer diffuse layers; accordingly, the 8 AÊ

superorder has to be of a simple (unidimensional) nature.

1.1.3. The basic Al±Co±Ni decagonal phase. The basic Ni-

rich d-Al-Co-Ni phase has attracted considerable attention

and many structure models have been proposed, without

succeeding up until now in describing in detail its structure. In

fact, its clean diffraction pattern, thermodynamic stability and

the high attainable crystal quality have made it a benchmark

of QC science. Hence, quite naturally, in our project of

development of superspace-based methods for d-QC structure

solution, basic d-Al±Co±Ni was chosen as the prototype for

developing and testing the atomic surfaces (AS's hereafter)

modelling technique (Cervellino, 2001). The structure deter-

mined here is only compatible with a simple 8 AÊ super-

structure. The highlights of many former structure models are

con®rmed and explained, also clarifying some apparent

contradictions. In addition, new important structural features

have been found, which may help to shed some light on the

still elusive phenomenon of quasiperiodic long-range order.

1.2. Reciprocal space analysis

A sample of good crystal quality and of suitable size for X-

ray diffraction experiments was synthesized in our laboratory

(see Baumgarte et al., 1997; Zhang et al., 1997, for details). The

stoichiometric formula Al70.6Co6.7Ni22.7 was determined by

electron microprobe (CAMECA SX50, �0:1 at.%). The

sample was extensively characterized by X-ray photographic

techniques, showing a decagonal diffraction pattern composed

essentially of sharp Bragg peaks with a limited amount of

interlayer diffuse scattering (Baumgarte et al., 1997; Zhang et

al., 1997). This is a strong indication against a random tiling

structure (see Appendix A2.2). To further assess the sample

quality, two-dimensional grid scans (Haibach et al., 2000) on

sensitive Bragg peaks were performed at the six-circle

diffractometer beamline at SNBL/ESRF. We could char-

acterize the sample as a good single decagonal quasicrystal,

excluding twinned approximants. The correlation length was

' 1 mm. The Bragg peak's HWHM does not increase at high

jqj?, indicating the absence of phason strain (Abe, Matsuo et

al., 2000). The X-ray data collection was performed at the six-

circle diffractometer beamline D3 at the synchrotron source

Hasylab (DESY; Haibach et al., 1995). 8404 re¯ections have

been measured, each one with its pro®le to allow parabolic

background correction. Pro®le integration yielded an

expected R value, R� � 0:0196. Re¯ections were indexed in

®ve-dimensional indices by the standard ®ve-dimensional

embedding (see Steurer & Haibach, 1999a, 2001; see also x1.3

and Appendix A1). Centroid statistics analysis (Haibach et al.,

2000) con®rmed the exact correspondence with the ®ve-

dimensional embedding. The quasicrystal reciprocal metric

constants3 were determined as a� = 0.2662 (1) and c� =

0.244768 (6) AÊ ÿ1 and the direct metric constants a � 1=a� =

3.757 (2) AÊ and c � 1=c� = 4.0855 (1) AÊ . c is the translation

period along the tenfold axis. The superstructure translation

period is 2c = 8.1710 (2) AÊ .

Merging the data in the Laue group 10=m mm yielded 1544

unique re¯ections (internal R value Ri = 0.029, weighted

internal R value wRi = 0.049). A second merging in the Laue

group 10=m yields 2767 unique re¯ections, with Ri = 0.030,

wRi = 0.048. Of the possible systematic absences, as listed in

Rabson et al. (1991) or Steurer & Haibach (1999a), only the

0000h5: h5 � 2n� 1 rule was strictly veri®ed. The h1h2h2h1h5:

h5 � 2n� 1 rule was consistently violated (95 unique re¯ec-

tions, 82 with I>�I); the h1h2h2h1h5: h5 � 2n� 1 rule was

weakly violated (52 unique re¯ections, 19 with I>�I). It is

almost equivalent to the selection of space groups P105=mmc

or P105=m. We kept the indication P105=m in order to

investigate the reason for this pseudosymmetry. The results

(see x2.7 and deposited material4) indicate that the symmetry

breaking is much more visible in E? (i.e. on the shape of the

atomic surfaces) than in physical space, where its effect is lost

in a maze of partly occupied atomic sites.

1.3. Patterson analysis

1.3.1. Interatomic vectors. The interatomic nearest-neigh-

bour vectors have been determined by the Patterson map

analysis (see Fig. 1). There are only two symmetry-inequi-

valent vectors in the (x1; x2) plane, rI and rII (as it happens in

other d-QC's, see Cervellino et al., 1998a, 2001b). The values

are rI = 2.45 AÊ ' ar, rII � 2:85 AÊ ' �ar. We denote by

ar � 2�a=5 an idealized bond length (see xA1). Their ratio is

� � � �3ÿ ��1=2 � 1:1755 etc. The number we denote as

� � 2 sin��=5� is the edge-to-radius ratio of a regular

pentagon. The polar angles are �I � k�=5, �II � �=10� k�=5.

This geometry indicates a centred pentagon (or a fragment

thereof) as the basic local atomic con®guration.

1.3.2. Five-dimensional embedding. The n-dimensional

embedding (Bak, 1985; Kalugin et al., 1985; Duneau & Katz,

1985; Janssen, 1986) is a well established method for

describing quasiperiodic patterns. We embed d-QC's in a ®ve-

3 a� and c� are de®ned (Steurer et al., 1993; Steurer & Haibach, 1999a, 2001) as
the physical reciprocal space lengths of the (10000) and (00001) re¯ections in
the standard embedding, respectively.
4 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: SN0016). Services for accessing these data are described
at the back of the journal.



dimensional space E (Steurer, 1990; Steurer & Haibach,

1999a, 2001). Some details are recalled in xA1.

After performing the data reduction in the standard ®ve-

dimensional embedding (Steurer & Haibach, 1999a, 2001) we

performed a Patterson embedding analysis (Cervellino, 2001;

Cervellino et al., 1998a,b). The procedure we employed is

based on the determination of the strongest family of maxima

on the quasiperiodic plane EQ of the Patterson function, which

is the electron density autocorrelation. The ®ve-dimensional

lattice parameters have been redetermined (see Table 1) as

those of the �ÿ1 embedding (Cervellino et al., 1998a). This

yields the most convenient unit-cell geometry in n-dimen-

sional superspace. At the same time, this corresponds to a

correlation analysis in physical space, allowing for the identi-

®cation of the scale and distribution of structural motifs (tiles

or covering clusters), as in the next section.

1.3.3. Tiling correlation analysis. Tilings (or coverings) are

often used to describe the physical space structure of QCs.

Some theoretical notions are recalled in xA2. A tiling is

understood as a space covering (with or without overlap) by a

®nite number of geometric objects (tiles) whose disposition

follows a speci®c rule. Tile(s) are the analogue of the unit cell

in a three-dimensional periodic crystal. The atomic decoration

of the tiles will be dealt with later. Now we consider the rule of

covering, because it is important to establish if this rule is

deterministic or random (see xA2.2). Patterson analysis

con®rms, as the diffraction pattern qualitatively indicates,

perfect quasiperiodicity.

Joseph et al. (1997) proposed a method to decide if a tiling is

perfectly quasiperiodic or random. The method is based on

visual recognition from electron density images of a basic

cluster, followed by reporting the cluster centre coordinates in

®ve-dimensional space. Another procedure is possible, which

eliminates the arbitrariness implicit in the visual recognition.

The Patterson function P is the electron density autocorrela-

tion. The vectors between the most frequent structure motifs

correspond to very high correlation values. Of particular

interest is the �000x4x5� section around the origin. The

Patterson function on this section will be the autoconvolution

of the AS which de®ne the cluster centres (working in terms of

a PPT or GDC, see xA2 for details). The deconvolution is still

an awkward problem, but important indications can be

extracted nonetheless. Fig. 2 shows the Patterson pro®les

along x4 and x5. Filled circles mark the Iobs Patterson (Iobs
00000

from the structure solution). Light-grey shading represents the

calculated autoconvolution of the AS de®ning the vertices of a

PPT[1]. The PPT[1] is the basic framework of a GDC[3], the

latter consisting of the former's projected Voronoi clusters
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Figure 1
Patterson map sections near the origin for the interatomic distance
determinations. In the (x1, x2, 0) section peaks corresponding to the
distances rI' ar = 2.43 AÊ and rII' 2.86 AÊ are clearly visible, and no other
peaks under 3 AÊ exist. In the (x1, 0, x3) and (0, x2, x3) sections other peaks
(III and IV, respectively) can be seen; rIII ' rIV ' 2.53 AÊ . The (x1, x2, c/2)
section shows that peak IV is the extension of III.

Table 1
Experimental details.

Crystal data
Chemical formula Al70.6Co6.7Ni22.7

Chemical formula weight 3632.11
Cell setting, space group Decagonal, P10
d1, d2, d3, d4 (AÊ ) 4.752 (3), 3.360 (2), 3.360 (2),

4.752 (3)
d5 � c (AÊ ) 4.0855 (1) (average 4 AÊ structure)
d5 � 2c (AÊ ) 8.1710 (2) (8 AÊ superstructure)
�12, �13, �14, �23, �24, �34 (�) 69.295, 45, 41.410, 90, 45, 69.295
�i5 (�, i = 1,...4) 90
V ( AÊ 5) 291.2 (7)
Dx (Mg mÿ3) 3.887
Dmeas (Mg mÿ3) 3.94 � 1%, for Co 8 at.%

(Steinhardt et al., 1998;
Saitoh et al., 1998;
Abe, Saitoh et al., 2000)

4.186 � 0.8%; 4.2, for
Co 13±15 at.%

(Chernikov et al., 1998;
Nakao et al., 1992;
Steurer et al., 1993)

Radiation type Synchrotron
Wavelength (AÊ ) 0.53905
No. of re¯ections for cell parameters 20
� range (�) 1.5±65.0
� (mmÿ1) 5.2882
Temperature (K) 298
Crystal form Decaprismatic
Crystal size (mm) 0.31 � 0.31 � 0.95

Data collection
Diffractometer Huber four-circle, beamline D3,

HASYLAB
Data collection method ! scans
Absorption correction Analytical
No. of measured re¯ections 8404
No. of independent re¯ections 2767
No. of observed re¯ections 2767
Criterion for observed re¯ections I > 0
�max (�) 65.0
No. of standard re¯ections 2
Frequency of standard re¯ections Every 45 min
Intensity decay (%) 0
Intensity ¯uctuation (r.m.s. %) 2.03
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(Gummelt, 1996; Kramer, 1999). The GDC[3] is the same

pattern of decagonal clusters of radius �3ar = 10.300 AÊ iden-

ti®ed in all electron microscopy works following Steinhardt et

al. (1998). The centres of the GDC[3] are in turn (Gummelt &

Bandt, 2000) the vertices of a PPT[3] (i.e. a �2-in¯ated PPT[1]).

Their autoconvolution is also represented (dark-grey shade).

The PPT[1] autoconvolution ®ts well the data; however, a

residual mis®t (shown as the difference-Patterson pro®le,

dotted line) is present. Can this be an indication of a signi®-

cant randomization of the basic tiling? Two other difference-

Patterson pro®les have been calculated to address the ques-

tion. Continuous line: a simple modi®cation of the geometry of

the AS (see Niizeki, 1993). The mis®t is signi®cantly reduced.

Dashed line: the addition of a large phasonic thermal factor

(four times the overall value determined for the atomic

structure) causes a much larger mis®t. We can conclude,

con®rming the result of Joseph et al. (1997) and Hory et al.

(1999), that a random tiling does not describe this d-QC.

However, its basic tiling is more complex than a Penrose tiling.

1.3.4. Atomic surfaces location. Another extremely useful

result of Patterson analysis is the determination of the position

and chemical composition of the centre of the AS's. The

notation is explained in xA1.

Recall now that we have two atomic layers per c-period (for

the 4 AÊ average structure). The x3 coordinates of the two

atomic layers are c=4, 3c=4, so z � 1=4; 3=4. The Patterson

function on the �D;Z� Harker section can be calculated (see

Fig. 3) and deconvoluted by the Symmetry-Minimum/Image-

seeking Minimum Function method, allowing for the deter-

mination of the AS's centres and their chemical composition.

The technique has been described in Haibach & Steurer

(1996) and applied to d-Al70.6Co6.7Ni22.7 in Haibach et al.

(1998). Two independent AS's resulted, AS A in

�q; z� � �1; 1=4�, with TM core, and AS B in �q; z� � �2; 1=4�,
with an Al core. In the z � 3=4 atomic layer there are two

(105-related) inverted copies, A0 in �q; z� � �4; 3=4� and B0 in

Figure 2
Patterson sections in perpendicular space can verify the existence and the
scale of an ideal tiling. Left: section along x4, centred on the origin; right:
section along x5, centred on the origin. Black circles: the Patterson
function of the QC, calculated from the observed intensities (I�00000� taken
from the structure solution). All compared curves have been scaled to
have the same value in the origin. Dark grey shaded pro®le: the calculated
autocorrelation of a Penrose pentagonal tiling PPT[3], describing the
centres of a 20 AÊ diameter decagon (Gummelt, 1996; Jeong & Steinhardt,
1997; Steinhardt et al., 1998). The relevant AS is drawn in the centre of
the ®gure (dark grey decagon). (a) The scale of all AS's is doubled with
respect to the rest of the ®gure; (b) for all the calculated pro®les, the
resolution has been equalized to the experimental one simply by
calculating the diffracted intensity in the Bragg peaks positions of the
QC's in reciprocal space. Pale grey shaded pro®le: the calculated
autocorrelation of a Penrose pentagonal tiling PPT[1] (pentagon edge
4.625 AÊ ). It agrees remarkably well with the calculated values; the
difference pro®le is also reported (dotted line). The AS is shown in the
centre of the ®gure (pale grey decagon). Continuous line: difference
pro®le of the autocorrelation of a Penrose pentagonal tiling PPT[1] with a
slight modi®cation due to Niizeki (1993). The AS is shown in the centre of
the ®gure (starred decagon, continuous line). Clearly, this modi®ed tiling
offers a better agreement; more complex modi®cations ± beyond our
scope ± could yield further improvements. Also, the effect of slightly
variable atomic decoration of the tiles (see text) should be taken into
account. Dashed line: difference pro®le obtained by adding a large
phasonic thermal factor to a basic Penrose pentagonal tiling (four times
the re®ned value for d-Al70.6Co6.7Ni22.7). The difference on the tails is not
much recovered, needing a larger phasonic thermal factor; however, the
difference in the central part is already very large. A signi®cant random
tiling contribution seems out of the question.

Figure 3
The Patterson function on the (D, Z) Harker section. (a) (top) shows the
effect of introducing AS C as carved out from the centre of AS B (see
x1.3.5). The arrows point to the additional peaks created by this
supplementary AS. For comparison, (b) (centre) shows the Iobs Patterson;
(c) (bottom) shows the Ical Patterson calculated from our model, without
the AS C, at the same re®nement stage.



�q; z� � �3; 3=4�. The QC space group P105=m forces these

AS's to have symmetry 5 (while P105=m mc would force

symmetry 5m).

The 8 AÊ superstructure has twice as many atomic layers and

it will have two more AS pairs, at z � 5=4 and z � 7=4

(keeping the notation as in the average structure, for simpli-

city). The con®guration of these two additional layers could be

the same as the former two or an isometric one. We will

consider the same con®guration, for reasons that will be

clari®ed in the next section.

1.3.5. Model selection. Many models have been proposed

for our QC, the majority of which assumes (more or less

explicitly) the same AS con®guration as we do. There are,

however, two classes of models which assume a different

con®guration. The Patterson analysis allows us to discard

them without having to carry out a full comparative re®ne-

ment.

The Al±Co±Cu d-QC is similar in many aspects to Al±Co±

Ni, but it also has large differences. In some works (Burkov,

1991; Wittmann, 1999) the two structures are considered to be

identical, apart from the obvious chemical substitutions. This

identi®cation is, at least, very approximate. In fact, the best

current models of d-Al±Co±Cu (Steurer & Kuo, 1990; Li,

Steurer et al., 1995; Cockayne & Widom, 1998b) are built upon

three AS's per atomic layer. The third one, AS C, is in

�q; z� � �3; 1=4� [and the related AS C0 in �q; z� � �2; 3=4�]. C

is the centre of our B, carved out and translated by 1/5 along D.

It is simple to show that this con®guration is not isometric to

that with two AS's. Fig. 3 shows clearly that the difference is

quantitative. We used our structure model for the comparison,

at an intermediate re®nement stage. We modi®ed the model

introducing AS's C, C0. We calculated structure factors and

from their squared moduli the Patterson function on the (D,

Z) Harker section (Fig. 3). For comparison, the Iobs Patterson

and the Patterson calculated from our model at the same

re®nement stage are also shown. It is evident that Al±Co±Cu/

Al±Co±Ni cannot be considered to be fully isostructural.

Another different AS con®guration sometimes proposed

for d-QC's in the Al±Co±Ni system regards the 8 AÊ (super)-

structure with a con®guration mutuated from the analysis of

Al±Co or Al±Fe PM phases. These works (Yamamoto et al.,

1990; Cockayne & Widom, 1998a) regard, anyhow, very Co-

rich or binary Al±Co d-phases, with strong differences in the

diffraction pattern with respect to Al70.6Co6.7Ni22.7. Differ-

ences in Co±Ni partition have marked structural effects. We

will show that this AS con®guration does not apply to

Al70.6Co6.7Ni22.7.

In our superstructure con®guration, we have, in layer order:

AS A� �1; 1=4�, AS B� �2; 1=4�; AS A0� �4; 3=4�, AS

B0� �3; 3=4�; AS A� �1; 5=4�, AS B� �2; 5=4�; AS

A0� �4; 7=4�, AS B0� �3; 7=4�. For simplicity, let us consider

equal AS's with the same symbol, the prime marking a �=5

rotation. AS A contains most TM, while AS B is mostly Al.

The alternative model differs only in the fourth layer, where

we have a pair AS A0� �4; 7=4�, AS B0� �0; 7=4�. This

corresponds to a �=5 rotation of all vectors between atom

pairs generated by the two AS's at a distance of ar ' 2.4 AÊ ; in

particular, several TM-centred Al pentagons of such radius

are �=5 rotated.

First of all, we notice that this alternative con®guration

breaks the 105 screw symmetry. Therefore, consistent viola-

tions of the strong extinction rule 0000h5: h5 � 2n� 1 (cf.

x1.2) would be expected. In fact, this happens for the d-QC of

Yamamoto et al. (1990).

This alternative con®guration is isometric with respect to

the �D;Z� Harker section. However, new interatomic vectors

appear in the physical space sections (see Fig. 4). This is due to

the coherent superposition, in the 4 AÊ average structure, of

the second and fourth layer, so generating a decagon from two

overlapped, inverted pentagons. The calculation has been

carried out by a similar procedure as described before, at a

more advanced re®nement stage. Fig. 4 shows �xy0� and �xy 1
2�

Patterson map sections, easily compared with Fig. 1. The

appearance of arti®cial peaks is a concrete reason for

discarding the alternative con®guration and the models which

contain it, at least regarding the Ni-rich composition. For very

Co-rich d-Al±Co±Ni phases, as well as for intermediate

compositions, a similar investigation would surely be inter-

esting.
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Figure 4
Patterson map sections near the origin for the Al13Co4-like 8 AÊ

superstructure model (see x1.3.5). In both the (x1; x2; 0) and the
(x1; x2; c=2) sections there additional interatomic peaks appear (indicated
by arrows), which are nonexistent in the Iobs Patterson (cf. Fig. 1).
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2. Model and refinement

2.1. Atomic surface modelling

Here we sketch brie¯y the techniques we used to model the

AS's. More details are given in Cervellino (2001). In principle,

modelling the AS's is equivalent to building a model in which

the properties of each atomic site are determined by its

coordination polyhedra.

2.2. AS models for ideal quasicrystals

xA1 describes the concept of atomic surface in a probabil-

istic sense. This generalization has been introduced to allow

for occupational disorder. At the beginning of our investiga-

tion, we did not consider fractional occupancy. We tried to

model in terms of ideal structure, with all atomic sites occupied

and ful®lling the closeness condition (Kalugin & Levitov, 1989;

Katz & Gratias, 1994; Deus, 1995; Cervellino, 2001). This,

loosely, requires the QC to be a Delone set of parameters rI =

2.45, rII = 2.85 AÊ (see x1.3.1), with at most one atom in any ball

of radius rI and at least two atoms in any ball of radius rII. The

values of rI and rII were desumed from general crystal-

chemical knowledge and from the Patterson map analysis (see

x1.3.1). This requirement would also give a high mass and

point density, around 4.5 Mg mÿ3 and 0.075 at. AÊ ÿ3. The

resulting models, however, never compared well with the data;

we obtained, with the most favourable geometries, wR> 0:3,

which is not to be taken into consideration.

The main reason for this failure was addressed in the

excessive density of such models. Measured mass densities for

basic Ni-rich d-Al±Co±Ni are under 4 Mg mÿ3 (Table 1). In

structural terms, the distance rI ' 2.4 AÊ is surely appropriate

for TM±TM and Al±TM pairs, not so for Al±Al pairs, for

which the distance rII ' 2.8 AÊ (as in pure Al; Ashcroft &

Mermin, 1976a; Villars & Calvert, 1991) is more appropriate.

This is not to be thought of as a rigid constraint ± Al±Al pair

distances �2.6 AÊ are found in Al±(Ni,Co) PM phases, but in a

small minority of cases. In the ideal QC, Al±Al pairs at 2.4 AÊ

would occur in a large fraction of cases (Cervellino et al., 2000),

which might be energetically unfavourable (see x2.6.1).

We brie¯y mention here another method for modelling the

atomic surfaces (Burkov, 1993; Yamamoto, 1996), which we

also tested with deluding results. The partition of the AS's can

be appositely chosen so as to obtain equal atomic decoration

of equivalent tiles of a (suitably chosen) tiling. This minimizes

the structure model's degrees of freedom, making it easier to

build and to interpret. However, there is no reason for this to

be more than a crude approximation, as results show. From the

physical point of view, the ansatz of `equal decoration'

corresponds to assume that (perfect) local ordering is priori-

tary over long-range ordering. This is the exact opposite of our

®ndings, as this structure shows, ®rst and foremost, long-range

order, while local order is mostly statistical.

Figure 5
(a) Logarithmic Fcal

h versus Fobs
h plot of the structure re®nement. Fcal

�00000�
has been taken as unity. (b) Illustration of the weighting scheme and of
the ®nal error distribution. Black dots: logarithmic Fobs

h =�Fh
versus

Fobs
h =Fcal

�00000� plot to show the distribution of errors on the measured
intensity. Columns with numbers: number of re¯ections over a given F
threshold. Every column has a height proportional to the number of
re¯ections with Fobs

h > kFcal
�00000�, where k is the centre of the column base

(logarithmic scale). Full circles, dashed line, right scale: the unweighted
agreement factor R calculated for each of the re¯ection subsets indicated
by the corresponding column. Empty circles, continuous line, right scale:
the weighted agreement factor wR calculated for the same re¯ection
subsets.



2.3. AS models for real quasicrystals

Introducing partial occupancy of the atomic sites or non-

unity probability density on the AS's, has important conse-

quences.

First of all, the crystal density and stoichiometry are now

decoupled from the AS's geometry. This gives new degrees of

freedom, with the possibility to introduce constraints so as to

reproduce experimentally known values.

Secondly, con®gurational entropy is

introduced in a natural way into the

stucture. We recall that a high degree

of con®gurational entropy is to be

expected in phases whose range of

thermodynamical stability is around

1273 K. This con®gurational entropy

is achieved without having to intro-

duce ad hoc a random tiling.

Thirdly, a structure derived from an

AS model with non-unity probability

would have a diffraction pattern

composed mainly of Bragg peaks plus

a smooth or constant diffuse back-

ground, as it is experimentally found

for the majority of well ordered QCs.

This diffractive behaviour has been

rigorously demonstrated by Baake &

Moody (1998), while it is not

demonstrated (see xA2.2) that

random tilings could produce any

Bragg peak. Furthermore, as we

already pointed out (Cervellino et al.,

2000; Haibach et al., 2000; Steurer &

Cervellino, 2001), many other desir-

able properties of AS models

(robustness of parametrization, in¯a-

tion symmetry, average periodic

structure, existence of families of

dense net planes orthogonal to all

strong re¯ections) are still valid.

Finally, most short distance

restraints can be removed or

weakened. It is in fact possible to

allow for very short intersite

distances, provided that the relevant

site occupancies are reasonably low. It

is also implied as a natural way to

introduce chemical disorder in the

crystal model. Any atomic site may

have different occupancies for

different atomic species, provided

that the sum does not exceed one.

All these arguments make the AS

modeling technique an ef®cient,

elastic and realistic tool for QC

structure determination. Now we will

show how we did build our model for

basic Al±Co±Ni.

2.4. Projected structure
The ®rst natural step was to build a

model for the projected structure. As
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Figure 6
(a) Red color scale map: the projected electron density on the (x1; x2) plane at a resolution of 1 AÊ .
Black is zero, white is maximum. Black contour lines, overlaid: the projected electron density at full
resolution (0.15 AÊ ). Contour lines every 10%. Decagons: a group of ®ve Gummelt decagonal clusters,
labeled by greek letters. Note that the centres of the clusters �; 
; � appear clearly asymmetric, while
clusters �; � appear approximately decagonal. Compare with the EM images of Yan et al. (1998). (b)
Black contour lines: the projected electron density (full resolution) on (x1; x2). Green lines: a
pentagonal tiling (Niizeki's modi®cation of a Penrose tiling, see text). This modi®ed tiling better
matches the projected motifs than the basic Penrose tiling, even if the correspondence is not yet
perfect. All the intervertex vectors with length ��ar = 4.625 AÊ are plotted. Note the characteristic tiles:
pentagons, stars, boats and thin rhombi. As a rule, pentagons are decorated by a centred atomic
decagon, while the other tiles are decorated by linear atomic motifs. Grey lines: network of Gummelt
overlapping decagonal clusters, centred on a �2-in¯ated version of the pentagonal tiling. The ®ve
decagons marked with greek letters in the centre are the same as in (a). Note the Y con®guration of
three pentagons in the centre of each decagon; on their intersection an atomic decagon with an empty
centre is formed. On cluster � this con®guration is evidenced by pink motifs. Each decagon
corresponds to a pair of inverted pentagons belonging to different atomic layers. Green decagon,
yellow/orange pentagons on cluster �: the double tiling introduced by Hiraga et al. (1994) and
Yamamoto (1996). The green star corresponds to the `ejection' of the tenth surrounded pentagon
observed by Hiraga. The tile symmetry should match the decoration's symmetry; this is not the case.
On clusters � and � this is less evident. (c) Detail (cluster �) showing the TM contribution to the
electron density; contour lines (10, 20,...90%). Black: contribution of the ¯at (F+, Fÿ) layers; grey:
contribution of the puckered (P", P#) layers. Close TM pairs (< 3 AÊ ) are marked as Ni atoms, isolated
TM atoms are marked as Co, in agreement with EXAFS results (Zaharko et al., 2001). In many cases
partial site occupancy does not allow a clear distinction.
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many atomic distance restraints are weakened, we could start

with very large AS's. These were derived from the shapes of

the deterministic model presented in Cervellino et al. (2000).

More extended and simpler shapes (pentagonal stars of radius

2�a=5) have been chosen in order to explore thoroughly

perpendicular space and to have a simple partition. They were

subdivided in subregions by an appropriate mesh (Cervellino

et al., 2001a). The subdivision must of course be compatible

with the AS's symmetry (given by the site symmetry at its

centre, in our case 5). As outlined in Cervellino et al. (2000,

2001a) and Cervellino (2001), the mesh must contain all

signi®cant partition lines which identify atoms in a different

local environment. This can be obtained by examining the

overlap of neighbouring AS's whose centres lie within a ®xed

physical space distance from that under construction. This

must be repeated for every physical space distance corre-

sponding to an important coordination shell. Once a ®rst

partition is obtained the procedure can be iterated starting

from the pre-partitioned AS's. Ideally, one iterates until no

new partition line can be added; practically, one may stop well

before that point, depending on the

number of parameters to re®ne.

Every subregion is then assigned

one or more chemical species,

depending on some prior knowledge

(see x1.3.4). Possible re®nement

parameters for every symmetry-

unique subregion are probability

(occupancy) and all static and

dynamic atomic displacement para-

meters (ADPs). Global parameters

(extinction, scale factor) must be

added. When re®ning the projected

structure, of course, all the z compo-

nents of ADPs can be neglected. The

dynamic ADP components in the

�x1; x2� plane were assumed to be

isotropic. As only re¯ections with

h5 � 0 are to be used, the parameters-

to-observations ratio is very high, so it

is important to keep free only those

parameters which really in¯uence the

outcome; this means keeping the

calculations under tight control.

At the beginning of the re®nement,

it is convenient to constrain density

and stoichiometry to known or plau-

sible values, otherwise calculation

times become unacceptable and false

solutions might be found. In our case

the stoichiometry was precisely

measured, but literature density

values for similar composition were

used (Steinhardt et al., 1998; Saitoh et

al., 1998; Abe, Saitoh et al., 2000). The

density constraint was released at the

last re®nement cycles, resulting in a

stable value.

At intermediate re®nement stages

it is possible to eliminate subregions

which stabilize as empty. Once the

statistical indicators were reasonably

good (wR< 0:12) we used Fourier

difference maps to decide slight

modi®cations in the mesh geometry.

The projected structure re®nement

ended with wR = 0.028 (471 re¯ec-

Figure 7
(a) The electron density on layer F+ at x3 � c=4. To allow uniform interpretation of ¯at and puckered
layers, in all layers the electron density has been projected along x3 on a thickness of� 1 AÊ above and
below each layer. The geometric motifs are the same as in Fig. 6(b). Separate contributions to the
electron density are plotted (red contour lines, TM contribution; blue contour lines, Al contribution).
The contours of TM electron density are every 10%; those for the Al density have been scaled by
ZAl=ZNi = 13/28 to give them the same evidence. On the left-hand side, pink-shaded triangles evidence
some pentagonal atomic motifs; on the right-hand side, colour-shaded pentagons evidence pseudo-
PBPs in differently phased con®gurations. (b) The electron density on layers P" (P#) at
x3 � 3c=4(7c=4). Same description. The average electron density of these layers is not much different
from layer F+, while layer Fÿ (not shown) is 10% less dense, although not dissimilar from F+. Pink
triangles and colour-shaded pentagons evidence the same structure motifs as in (a). (c) The x3 moment
of the electron density on the puckered layers. This shows the effect of puckering. Atoms lying exactly
on the layer plane disappear, while atoms out-of-plane are evidenced. Black contour lines (10±40%)
and red contour lines (50±100%) have been used to evidence the most shifted atoms. The yellow band
identi®es the parallelepiped whose bounded-projection along x2 is shown in Fig. 8.



tions, 328 free parameters). The solution thus obtained was

used as a starting point for the three-dimensional structure

re®nement.

2.5. Three-dimensional structure and 8 AÊ superstructure

The puzzle we had to solve to re®ne the three-dimensional

structure was the problem of the atomic z displacements.

Indications of atoms displaced from the atomic planes were

obtained from Fourier difference maps. Furthermore, without

introducing z displacements, wR remained too high.

As the atomic layers are mirror planes, each z displacement

means introducing a split position with two atoms having

opposite displacements. Furthermore, in many cases it

appeared necessary for a triply split position, with one atom

on the layer and two oppositely displaced. This result is rather

cumbersome. Therefore, we introduced a z-displacement-

based 8 AÊ superstructure,5 compatible with the previously

mentioned diffuse scattering interlayers. The model consists of

one ¯at layer (F+) at z � 1=4, described by AS's A, B;

one puckered layer (P") at z � 3=4, described by AS's

A0, B0;
one ¯at layer (Fÿ) at z � 5=4, described by AS's A, B;

one puckered layer (P#) at z � 7=4, described by AS's

A0, B0.

More speci®cally, layers P" and P# were constrained to be

equal, except for the z displacement having opposite signs

(positive and negative, respectively). Layers F+ and Fÿ are ¯at

and unconstrained. In particular, occupancy values in F+ were

restrained to be larger or equal to the respective values in Fÿ.
These attributions are of course only conventional, because

without re¯ections with semi-integer h5 the F+, Fÿ and the P",

P# layer pairs appear overlapped. Many signi®cant differences

between two layers constituting an overlapping pair could be

resolved due to different ADPs, but their assignment is arbi-

trary.

There are two plausible reasons for this ordering. Firstly, a

locally high atom density in the F+ layer might repel atoms of

the adjacent puckered layers, so that they come closer to the

layer Fÿ, which is less dense. Secondly, Co atoms in the Fÿ (or

F+) layer might attract Al atoms from the adjacent ones. The
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Table 2
Re®nement details.

Re®nement
Re®nement on F
R 0.1701 (all 2767 unique re¯ections)

0.0777 (I > 3�I , 1198 unique
re¯ections)

0.0599 (I > 10ÿ4Imax, 837 unique
re¯ections)

wR 0.0601 (all 2767 unique re¯ections)
0.0568 (I > 3�I , 1198 unique

re¯ections)
0.0542 (I > 10ÿ4Imax, 837 unique

re¯ections)
S 11.46
��j jmax (e AÊ 3) 1.97
��j jmax (e per atom) < 0.8

No. of re¯ections used in re®nement 2767
No. of parameters 749
Weighting scheme w � 1=�2

F

Extinction method Becker±Coppens, Thornley,
modi®ed (see x2.6.1)

Extinction coef®cient 0.75 (3) � 10ÿ4

Source of atomic scattering factors International Tables for
Crystallography (1992, Vol. C)

Anomalous scattering factors Cromer±Liberman

Figure 8
An illustration of the 8 AÊ superstructure, made by bounded projection
along x2 of the electron density in a parallelepiped (see Fig. 7d, yellow
band). Top: the electron density of the structure in one type of domain.
Calculated including unobserved re¯ections on the half-layers. Centre: the
same after a shift of c along x3, as it would be in the second type of
domain. Bottom: Fobs plot, only observed re¯ections. It is clear how it can
result from a coherent superposition of the former two maps. The
re¯ections on the half-layers would be cancelled by destructive
interference if we assume the same volume fraction for the two types
of domains.

5 The notation will be kept consistent with the 4 AÊ average structure
throughout.
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latter is a much weaker variant of the 8 AÊ ordering in the (Co-

based) PM phases.

This superordering should produce weak Bragg peaks on

the semi-integer diffuse layers; to avoid that, we can imagine,

as currently hypothesized by Steurer & Frey (1998) and Frey

et al. (2000), a structure of columnar domains, having in®nite

extensions parallel to the periodic axis. The domains would be

coherent in the projection onto the quasiperiodic plane

�x1; x2�, while some of them would be randomly displaced of

length c along x3 or of one unit along z.6 This is illustrated in

x2.7. With a volume partition near 50%, this would extinguish

all Bragg re¯ections in the semi-integer diffuse layers. The

diffuse part would remain, as it depends on the effective

atomic distribution throughout all the partially occupied sites

(Welberry, 1985), which is independent of the domain struc-

ture. As possible domain boundaries, all lines of zero vertical

displacement in the P"# layers are of course plausible. In x2.7

we show that such lines coincide frequently with quasiperiodic

tiling edges (of a PPT1), which agrees with the coherence

hypothesis. The interface energy between different domains

should be very low, because only a few cross-layer bonds might

be affected. These considerations justify the equal volume

fraction.

One more conceptual problem is the space group. The Laue

group of this model remains 10=m, but the corresponding

superstructure space group is only 10, losing the 105 screw and

consequently the observed extinction rule �0000 2n� 1�.
However, this can be recovered as the effect of a strong

pseudosymmetry. We decided to introduce a pseudosymmetry

restraint, simply by adding to the data set seven ®ctitious

re¯ections h � �0000h5�, with h5 = 1,3,5,...13, with Fh � 0 and

assigning them high weights, empirically chosen as

100 max�wh�. This proved to be effective; the calculated F's

remained well below the observability threshold, which is

� 10ÿ4 max�Fh�. No easy explanation can be given for this

pseudo-extinction.

2.6. Refinement method and results

We developed a capable software for the structural re®ne-

ment of d-QC's. The main features are described in Haibach et

al. (2000). The program minimizes a target function, which can

be chosen between all those which are usually employed in

crystallography. In the present case the target function has

been chosen as

f �
X

h

Fobs
h

�� ��ÿ Fcal
h

�� ��ÿ �2
wh;

where Fcal
h is evaluated as the FT of the ®ve-dimensional

periodic structure model and wh � 1=�2
Fh

. The geometry of the

AS's and their subdivision is given as input and not re®ned.

Each subdomain has a speci®ed chemical identity; mixed-

chemistry regions are treated as separate congruent sub-

domains. For each subdomain in the asymmetric unit the

re®nable parameters are occupancy, anisotropic thermal

factor (dynamic ADP's), physical space shift from the ideal

cut-and-project position (static ADP's), anisotropic phasonic

thermal factor and anomalous scattering components. The

input card contains the geometric information together with

the initial values of the re®nable parameters. The actual

re®ned parameters in each run are speci®ed (each with its

upper and lower bounds) in the second part of the input card,

the remaining ones are ®xed. The chosen re®ned parameters

set can be subjected to a set of linear equality constraints and

inequality restraints (speci®ed in the third part of the input

card). In particular, fractional composition of a given element

and mass density can be constrained to a given value or

restrained in an interval. Occupancies of subdomain pairs

which happen to generate too-close atom pairs in physical

space are also restrained so that their sum is less than one. For

instance, mixed-chemistry regions generate overlapping atom

pairs, so they need to be restrained. For more complex groups

of short bonds one may give occupancy±sum restraints with

Table 3
Re®ned occupancies and areas of the Al and TM subregions of AS A in
the Fÿ, the P (" and #) and the F+ layers.

TM Al

Occupancy
Area

Occupancy
Area

Fÿ P F� [103a2] Fÿ P F� [103a2]

1 1.000 1.000 1.000 5.860 ± 0.100 0.452 4.109
2 ± 1.000 ± 2.620 0.152 ± 0.502 4.240
3 ± 0.405 0.407 4.109 0.295 0.296 0.495 4.240
4 1.000 1.000 ± 1.620 0.202 0.350 0.252 4.497
5 0.700 0.701 0.500 4.240 0.345 0.450 0.295 2.620
6 0.656 0.755 0.906 4.497 ± 0.846 ± 2.620
7 0.649 0.503 0.699 2.620 0.902 ± 0.952 4.240
8 0.205 0.149 0.355 2.620 1.000 0.101 1.000 2.620
9 1.000 1.000 1.000 1.620 1.000 1.000 1.000 1.001
10 0.454 1.000 0.705 2.620 1.000 1.000 1.000 0.619
11 1.000 ± 1.000 2.620 0.901 0.252 0.801 2.620
12 0.357 0.705 0.707 4.240 1.000 1.000 1.000 2.620
13 0.155 ± 0.555 2.620 ± 0.751 ± 4.240
14 0.257 0.210 0.207 4.240 ± 0.750 ± 1.001
15 ± 0.202 ± 1.620 0.401 0.550 0.501 1.620
16 ± 0.550 ± 2.620
17 0.452 0.550 0.652 4.240
18 0.601 0.751 0.401 2.620
19 1.000 0.051 1.000 2.620
20 1.000 0.700 0.752 4.240
21 1.000 ± 1.000 2.620
22 0.352 0.900 1.000 4.240
23 ± 1.000 ± 1.001
24 1.000 ± 1.000 1.620
25 0.452 0.301 0.452 4.240
26 ± 0.150 ± 2.620
27 0.900 1.000 1.000 0.619
28 1.000 1.000 1.000 1.001
29 0.451 0.201 ± 2.620
30 0.801 1.000 1.000 2.620
31 0.702 1.000 0.602 4.240
32 0.101 0.150 0.301 1.620
33 ± 0.550 ± 2.620
34 0.951 0.452 1.000 2.620
35 0.301 ± 0.151 2.620
36 ± 0.600 ± 2.620
37 0.802 ± 0.802 4.240
38 ± 0.550 ± 4.240

6 In other d-QC's, columnar domains with c=2 displacements have been
detected (Saitoh, Tsuda et al., 1999); these domains need to be incoherent,
unless all the re¯ections with odd h5 be (pseudo)extinct. However, no
indications of such nanostructure exist in basic d-Al±Co±Ni.



more terms or simply more two-term restraints. The short-

bond conditions are to be determined separately at the

beginning, then the resulting restraint equations have to be

included in the input card. This geometric exercise (see

Haibach et al., 2000) needs some bookkeeping. It has also to

be veri®ed at successive stages of the re®nement in the

presence of high static ADPs.

In the presence of a very complex structure, it is necessary

to use several cycles of partial re®nement in which only a

subset of the free parameters is used, before running on the

full parameter set, which meanwhile can be reduced. The

necessary ®rst stage is to obtain a good initial estimate of all

occupational and positional parameters (static ADPs): this can

be performed in a higher-symmetry space group or, as we did,

working in the z projection.

Constraints are also useful to reduce the number of free

parameters. Some constraints (e.g. the stoichiometry, as we

have a very precise estimate) can be simply kept ®xed. For

others (e.g. the density, whose value we could only infer) it is

necessary ®rstly to test different values in a plausible range

and then choose the one giving the best results; secondly, it is

necessary, in the last stages, to re®ne it (removing the

constraint) and check that the solution is stable. Many addi-

tional constraints can be derived from the restraint equations

when these stabilize on the upper or lower bound.

The re®nement results are given in Table 2. The observa-

tions-to-parameters ratio (3.7, for 749 parameters and 2767

observations) is high, but acceptable. However, by the careful

procedure outlined above, convergence was achieved

successfully. With regard to the short-bond occupancy±sum

restraints, we noted that the summed occupancies rarely go to

the bounds and even then mostly in a trivial way ± with one of

the occupancies to 1 and the other(s) to zero. In fact, only in

the ®rst part of the re®nement are the short-bond restraints

active.

To keep the re®nement meaningful, on the last cycles we

®xed to zero all the AS subregions

with occupancy stable under 0.05,

while those with occupancy above

0.99 have been ®xed to 1. Neigh-

bouring subregions have been merged

when they are not particularly

different in any respect. Static ADPs

for the same subregions in different

layers have been constrained to

equality in the ®rst phase. Successive

tests revealed this situation to be

stable, therefore, these constraints

have been kept. A more detailed

statistical analysis is shown by the

logarithmic Fobs±Fcalc plot (Fig. 5a)

and the detailed R-values distribution

and F±�F analysis (Fig. 5b). In Table 2

we also report the values relevant to

the subset of most reliable re¯ections

(those with Ih>3�Ih
) and to the subset

of re¯ections which would be ideally

observable on a rotating-anode

diffractometer, selected by a very

liberal criterion Ih>10ÿ4 max�Ih�.
Tables 3 and 4 report the re®ned

occupancy parameters for all the

surviving subregions of the atomic

surfaces A, B, respectively. All other

re®ned parameters, as well as the

coordinates of the vertices of the AS's

partition in subdomains, are depos-

ited.

2.6.1. Global parameters. Extinc-

tion is important in highly symmetric

perfect intermetallic crystals. We

evaluated different approaches to

evaluate this effect, opting for a

simpli®ed version of the Becker±

Coppens algorithm (multiple scat-
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Figure 9
(a) AS A, Al subregions. Numbered, pale grey, the subregions in one asymmetric unit. The overlaid
polygons marked with G4 and G2 are copies of the AS of Fig. 2, centred in the origin of the unit cell.
This AS is the locus of the centres of 20 AÊ Gummelt decagons. The overlapping portions of AS A
correspond to atoms located at a ®xed physical space distance from the centre of one Gummelt
decagon. This distance is ar = 2.43 AÊ for G4 and �2ar = 6.37 AÊ for G2. Note how different clusters
would have different decoration in the respective circles. (b) AS A, TM subregions. Same description.
(c) AS B, Al subregions. Same description. Polygons G1 and G3 correspond to distances of �ÿ1ar =
1.50 AÊ and �ar = 3.94 AÊ , respectively. (d) AS B, TM subregions. Same description.
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tering in a single mosaic block; Becker & Coppens, 1974a,b,

1975; Thornley & Nelmes, 1974; Thornley, 1983). Extinction

was evaluated as

"h � 1ÿ � Fobs
h

ÿ �21� cos4��h�
1� cos2��h�

� �1=2

;

with �h denoting the diffraction angle and � the unique

extinction parameter (its ®nal value is reported in Table 2).

The largest effect regards the re¯ection (00002), with "�00002� =

0.62.

The perpendicular space random displacement parameter

B? (phasonic thermal factor, see xA2.2) was re®ned as an

overall isotropic parameter; the signi®cance of more detailed

forms was estimated to be small. Its value of 0.51 (5) AÊ 2,

corresponding to an r.m.s. displacement of hu2
?i

ÿ �1=2� 0:03ar

(the AS radius is � ar), indicates a good structural regularity.

The actual value might be smaller because this parameter may

incorporate the effect of approximations implicit in the

structure model.

The resulting value of the crystal density Dx = 3.887 Mg mÿ3

is in good agreement with literature values (3.94 Mg mÿ3, see

Table 1) for basic d-Al±Co±Ni of close composition. The

corresponding point density is 0.06443 at. AÊ ÿ3 (atomic volume

15.52 AÊ 3). Note that the density Dx is 7% lower than the

measured value for d-Al±Co±Ni with �13 at.% Co (Edagawa

superstructure). The Edagawa phase is richer in Co and

thermodynamically stable at lower temperature (1023 K) than

the basic Ni-rich phase. These features are suf®cient to explain

the difference. If we take a Gummelt decagon (10.3 AÊ radius)

as the volume unit, our re®ned density yields on average 41.25

atoms per decagon per layer; for the Edagawa phase, we

would have only 3.1 more atoms per decagon per layer.

Additional atoms would reduce the free space and the

disorder degrees of freedom, as expected. Longer-range local

correlations in a denser phase would also explain super-

structure ordering. A more complete answer will be given by a

detailed structure solution of the Edagawa phase, which we

plan to undertake.

A note is necessary on the reliability of the measured mass

density values. Due to the frequent observation of micro-voids

in QCs, it has been argued that measured density values might

be severely biased. A simple calculation, assuming equal

spherical voids arranged on an f.c.c. (face-centred cubic)

lattice, shows that, to obtain a 7% void volume fraction, the

minimal centre-to-centre separation must be exactly 2.2 times

the void diameter. For a more reasonable ®ve-diameter

separation we have only 0.56%. The only measured value we

found for the void volume fraction in QC's (Mancini et al.,

1998) is 0.2%. Typically, an experimental error of 1% on the

density is found and the bias due to micro-voids can be

neglected.

2.7. The refined structure: graphical presentation

Conventional representations of a quasiperiodic, strongly

disordered structure are not possible or meaningful. There-

fore, we have to illustrate this structure in original ways,

selecting the most informative views.

Fig. 6(a) shows the projected structure at a resolution

reduced to 1 AÊ , with overlaid (contours) full-resolution map.

A decagonal `¯ower' composed of ®ve partly overlapped

Gummelt decagons is also overlaid. This plot shows roughly

how the structure might be seen at the typical resolution of an

electron microscope. The decoration of the Gummelt deca-

gons appears simpli®ed and the differences between decagons

are less visible, although they were already noted by Yan et al.

(1998). This has led to a proliferation of simpli®ed structure

models, based on different interpretations of low-resolution

HRTEM or HAADF images, see x3.2. The asymmetry of the

decagons is also clearly visible, in agreement with most

observations. Fig. 6(b) shows the projected structure electron

density, drawn by contour levels. The resolution, evaluated as

0:25�= sin��max�, is 0.15 AÊ . Several structure motifs discussed

in the text are overlaid. Fig. 6(c) shows the projected TM

contribution to the electron density. Colour-coded: contribu-

tions from the averaged F+, Fÿ and P", P# layers. Some atom

pairs, corresponding to interlayer bonds < 3 AÊ , are evidenced

by rectangles. These should be nickel sites, as shown by

polarized EXAFS on d-Al±Co±Ni (Zaharko et al., 2001): Co

atoms do not have TM neighbours under 3 AÊ , while Ni atoms

Table 4
Re®ned occupancies and areas of the Al and TM subregions of AS B in
the Fÿ, the P (" and #) and the F+ layers.

TM Al

Occupancy
Area

Occupancy
Area

Fÿ P F� [103a2] Fÿ P F+ [103a2]

1 0.500 0.653 0.450 4.240 0.495 0.100 0.545 4.240
2 1.000 0.549 1.000 2.620 0.702 0.300 1.000 4.240
3 1.000 0.648 1.000 1.620 0.901 0.100 0.901 2.620
4 0.598 0.603 0.598 2.620 1.000 0.550 1.000 2.620
5 1.000 0.903 1.000 2.620 0.152 0.102 0.052 4.240
6 0.354 ± 0.354 2.620 0.802 1.000 0.852 4.240
7 ± 0.205 0.107 4.240 ± 0.446 ± 2.620
8 0.504 0.703 0.554 2.620 1.000 1.000 1.000 2.620
9 ± 0.346 ± 1.620
10 0.201 0.450 ± 2.620
11 1.000 0.800 1.000 2.620
12 0.401 0.350 0.401 1.001
13 ± 0.150 ± 2.620
14 0.396 0.150 0.396 2.620
15 ± 1.000 ± 2.620
16 0.851 1.000 0.951 1.620
17 0.501 0.850 0.501 1.620
18 0.501 1.000 0.601 2.620
19 ± 0.400 ± 4.240
20 1.000 0.400 1.000 2.620
21 0.052 0.900 ± 4.240
22 0.051 1.000 0.251 1.001
23 1.000 0.850 1.000 4.240
24 ± 1.000 0.451 2.620
25 0.251 0.150 0.451 2.620
26 1.000 ± 1.000 0.619
27 0.601 1.000 0.601 1.001
28 0.051 1.000 0.101 2.620
29 0.051 ± 0.151 2.620
30 ± 0.400 ± 4.240
31 ± 0.150 0.151 2.620
32 0.901 1.000 0.951 1.620
33 0.151 1.000 0.351 2.620



do. The latter form zigzag chains along the periodic axis, as

hypothesized by Cockayne & Widom (1998b). In contrast,

some isolated TM sites may be attributed to Co. TM assign-

ment cannot be carried out for all sites, because partial

occupation frequently causes indecision.

In Fig. 7 the Fcalc electron density is represented in detail.

The Fdiff electron density, not shown, is very low (maximum

voxel value 2.4% of the maximum Fobs voxel in a

12a� 12a� 2c volume grid of 1200� 1200� 200 points) and

featureless. In particular, Figs. 7(a) and (b) show the electron

density for the two F+, P"# layers, respectively. Separate

contributions from Al and TM are evidenced in different

colours. The contour levels for the Al contribution are scaled

by ZAl=ZNi � 13=28. The layer Fÿ (not shown) is structurally

similar to F+. Fig. 7(c) shows the x3 moment of the electron

density on the P"# layers, to evidence which atoms are most

displaced from the layer plane. The layer x3 moment is de®ned

as Z �1
ÿ1

dx3 �x3 ÿ xL
3 � �L

e x1; x2; x3; 0; 0� �;

where xL
3 is the ideal coordinate of the layer plane and �L

e the

electron density of all and only the atoms in the layer

considered to be single. Note that most tile boundaries of a

PPT1 (green lines) are zero-moment lines, therefore, they are

possible domain boundaries. Also to be noted is the weak

breaking of the mirror symmetry (mirror plane orthogonal to

x2). It is clari®ed that the effect is due to small occupancy

differences in several sites rather than large differences in a

few sites.

Fig. 8 is a parallelepiped-bounded projection along x2,

useful to illustrate our concept of the 8 AÊ superstructure in

terms of coherent domains.

Figs. 9(a)±(d) represent the partition of the AS's A, B, with

separate representations for Al and TM (this is necessary due

to their large overlap). Their complex shape stimulates

re¯ections on the AS's nature. We determined them as the

union of polygonal-shaped subdomains. Another group

(Elcoro et al., 1994) put forward the use of symmetry-adapted

functions to describe the AS's boundaries. They have obtained

encouraging results (Elcoro et al., 1995) with simple models

(see x3.1). From the computational point of view, the advan-

tages of this approach (slight reduction of free parameters)

probably do not compensate for the more complex calculation

of the Fourier transform. The use of symmetry-adapted

functions is interesting in a broader sense, that is to model the

probability density on the AS's, using continuous smooth

functions rather than piecewise-constant ones. Furthermore,

as we observe signi®cant static ADP's, the shape of the AS's

might be better described as two-dimensional varieties rather

than (piecewise) ¯at polytopes parallel to E?. Presently, the

use of symmetry-adapted functions to describe both four-

dimensional shape and occupancy of the AS's seems

appealing, even if theoretically arduous.

It is customary to present, as a further assessment of the

quality of the structure solution, Fobs±Fcalc±Fdif Fourier maps

of the AS (i.e. x4x5 sections passing through the AS centres

and on the x1x4 section, which contains the four-dimensional

cell body diagonal). We did calculate such maps, necessarily

limited to the average 4 AÊ structure (P10). To compensate for

the z-ADPs, we used bounded z-projections with thickness

�c=4 around the average atomic layer. These maps were not

very informative. The AS structure is better represented in

Fig. 9. The Fobs±Fcalc maps are not sensibly different. The Fdif

maps appear very weak and featureless. Taking as a 100%

level the centre of AS A (maximum for all sections), the

maximum difference appears in the AS B and AS B0 x4x5

sections, amounting to less than 2%. The plots are included in

the supplementary material.

2.8. Local (dis)order: comparison with approximant PM
phases

It is very dif®cult to make any meaningful autonomous

structural discussion. Given the statistical nature of most

atomic sites, this would take a lengthy and cumbersome listing

of probable local con®gurations. However, some regularity

can be noticed. Atomic motifs compare well with those

occurring in approximant PM phases and in PM-approximant-

based structure models of d-QC's (Saitoh, Tsuda et al., 1999;

Yan & Pennycook, 2001; Cockayne & Widom, 1998a).

Consider the tiles of the PPT[1], drawn as green lines in Figs.

6(b), and 7(a) and (b). First, divide them into `acute' and

`obtuse' tiles (the former having at least one vertex angle of

�=5). The acute tiles are decorated by linear atomic motifs,

along the bisectrix line of the �=5 angle(s). The obtuse tiles are

pentagons (3.94 AÊ radius) which appear in two orientations,

say `right' and `left', respectively, if they have one vertex to the

right or to the left of the centre. In projection (Fig. 6b) the

decoration of both is similar, roughly a centred decagon of

radius ar. This decagon decomposes in two inverted pentagons

on two neighbouring layers (Figs. 7a and b). A pentagonal-

biprismatic column results (as in Steurer et al., 1993), also

common in PM phases (Grin et al., 1994b). In the ¯at layers,

`right' pentagons of the PPT[1] contain one centred ar pentagon

of atoms; the centre often has mixed chemistry, while the

pentagon can often be decomposed in a TM acute triangle

(some evidence given in Figs. 7a and b) plus two Al atoms.

From the low values of site occupancy, approximately two TM

atoms and one Al atom may be distributed on these sites.

Always in the ¯at layers, the `left' PPT[1] pentagons are

decorated by non-centred atomic pentagons; these have mixed

chemistry, low occupancy and the result is often deformed

(squashed). In the puckered layers, we repeat the same

considerations, just inverting the roles of `left' and `right'

PPT[1] pentagons. About the z displacements, from Fig. 7(c) it

is evident that in the centred ar pentagons often only the

central atom is displaced, while in the uncentred ones all the

®ve pentagonal sites are displaced. Other important ar anti-

prismatic pentagonal columns are formed at the junction of

three PPT[1] pentagons, in the centre of GDC3 (see Figs. 7a

and b).

The most important motif present in (Al±Co) approximant

PM phases is the pentagonal bipyramid, or PBP, of Cockayne
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& Widom (1998a; cf. Fig. 2 of that work). This motif is struc-

tured on four layers (8 AÊ ). The basal layer (A) contains a ¯at

TM pentagon, with the size of the PPT[1] pentagons (4 AÊ

radius). Al atoms are found in its centre and intercalated on

the edges. Below and above (B layers), there are two penta-

gonal caps, that is, TM-centred ar pentagons of Al; these

belong to puckered layers, because the central TM is pushed

away from the central Al of layer A. There is a fourth layer

(C) as a junction, with another TM-PPT[1] pentagon and ®ve

Al atoms forming a squashed ar pentagon inside; the centre is

free. The alternance is then BABC.... In our structure this

complex con®guration is not found as such, but a modi®ed

version with layer A replaced by another C layer (quasi-PBP).

We have sequences BCBC..., either with the B's on the F+, Fÿ

layers and the C's on P", P# layers or vice versa. This is

evidenced in Figs. 7(a) and (b). The TM-centred ar pentagons

of layers B are formed by Al and TM and not only Al; in

correspondence, their TM vertices are shared with the TM-

PPT[1] pentagon of a neighbouring quasi-PBP. Many sites are

statistically occupied. A strong z displacement of the TM

centre of B is no longer necessary; rather, the inner Al atoms

of C are often displaced.

The chemical reason for the differentiation of the quasi-

PBP is most certainly the substitution of most Co by Ni. This

is, on the atomic scale, the reason for the loss of a larger

differentiation on the 8 AÊ four-layer sequence, discussed in

x1.3.5.

Important indications originate from statistical mechanics

simulations (Cockayne & Widom, 1998b; KrajcÏõÂ et al., 2000;

MihalkovicÏ et al., 2001). Simulations based on local pair

interactions can reproduce well the local atomic structure of

known PM approximants. On the other hand, the quasiper-

iodic long-range order is not reproduced at all. HBS-type

(hexagon±boat±star) random tilings form instead. This indi-

cates that the key interactions responsible for the long-range

order must be of non-local nature (see x2.9), while local

con®gurations are determined mainly by local interactions,

independently from periodicity or quasiperiodicity.

2.9. Global order: comparison with VOPAS phases

2.9.1. QC±VOPAS structural comparison. The study of the

structural relation of QCs with VOPAS phases is much less

popular with respect to the PM phases, because the local order

(atomic motifs) is very different. Few works (Chattopadhyay

et al., 1987; Dong, 1989; Dong et al., 1994; Mandal & Lele,

2000; Zhang et al., 2000; Steurer & Cervellino, 2001) put forth

this topic. However, this relationship is not less important; QC

is possibly a convergence point, or better, a fortunate

combination of the pentagonal local order of PM phases with

the long-range ideal order of VOPAS phases. The ternary

composition of most stable QCs ®ts well in this frame.

Consider the Al-rich part of the Al±Co±Ni phase diagram. All

but one of the Al±Co (pseudo)binary phases (listed in x1.1.1

and Fig. 10) are characterized by pentagonal motifs; the

exception is Al9Co2 (Douglas, 1950), the only one with

>80 at.% Al. This is completely different for Al±Ni phases.

Here, only one phase (Al3Ni; Bradley & Taylor, 1937b) shows

pentagonal structure motifs, see Steurer (2001a) and refer-

ences therein. All other Al±Ni phases (see x1.1.1 and Fig. 10)

can be described as vacancy-ordered CsCl-type (�-type, B2-

type) derivative structures. Why do Al±Ni phases show

vacancy-ordering but Al-Co phases do not? The defect ener-

getics of the Al(Ni,Co) � phases have been thoroughly studied

(Alavi et al., 1999; Bester et al., 1999; Korzhavyi et al., 1999;

BoÈ rnsen et al., 2000; Schapink, 2001), clearly showing in the

case of Ni a higher energy for AlTM substitutions than for TM

vacancies. On the other side, this energy difference in the case

of Co is marginal.

Vacancies play a structural role also in QCs. Several posi-

tron-annihilation studies on d-Al±Co±Ni (Nakao et al., 1992),

as well as on other Al-based QCs and on related PM-

approximant phases (Ohata et al., 1990; Nakao et al., 1993;

Lawther & Dunlap, 1994; Kanazawa et al., 1994; WuÈ rschum et

al., 1994, 1995; Kanazawa et al., 1997; Sato et al., 1999), have

been performed. They all indicate a very high concentration of

structural vacancies in QCs and a much lower concentration in

PM phases. Furthermore, as the density of vacancies seems to

increase with the perfectioning of quasiperiodic order during

annealing (Prekul et al., 1998), they are not to be thought of as

mere defects.

Figure 10
Numeric atomic density n� versus Al fraction xAl representation for all
the known Al-rich Al±Co±Ni phases. Circles, the total numeric atomic
density; rhombs, the partial numeric atomic density of Al atoms. n� is in
units of atoms per � -AlNi b.c.c. (body-centred cubic) cell (lattice
parameter 2.88 AÊ ). The Co:Ni partition is represented by black:white
angular sectors in the symbols. The dotted thin line is the n� value for
natural (f.c.c.) Al. The thick grey curve represents the behaviour of the
VOPAS phases (all Al±Ni binary); the continuous part represents a
continuum of off-stoichiometric AlxNi1ÿx (x = 0.5,... 0.62) experimentally
determined phases, while the dashed part is an ideal continuation. The
grey vertical band is the stability region of d-Al±Co±Ni. Note that the two
d-QC's represented here are a junction between the VOPAS AlNi phases
and the (mostly Co-based) PM phases, clustered on the right.



The notion of PAS of a d-QC is a concept mutuated from

the world of incommensurately modulated structure (IMS, see

Steurer & Haibach, 2001), to which many QC's can be

reduced. The PAS we deal with is amenable to the CsCl-type

AlNi structure (Steurer, 1999a); in a centred orthorhombic

setting its primitive vectors are parallel to the x1; x2; x3 axes.

Details are recalled in xA3. With our re®ned numeric density,

a PAS unit cell contains 1.492 atoms (cubic setting) or 2.984

atoms (orthorhombic setting). The QC's electron density (or

the atomic positions) can be averaged in the PAS unit cell;

alternatively, the QC's atomic site position vectors can be

reduced into one unit cell modulo lattice translation. The

results can be interpreted as an (electronic or atomic) prob-

ability density (PD) in the PAS unit cell. This PD results from

the quasiperiodic modulation. If the PAS has effectively a

strong structural relationship with the QC, the PD should keep

resemblance with a CsCl structure, with relatively narrow PD

peaks rather than atoms. In terms of ®ve-dimensional

embedding, the PD peaks are just the obliquely projected AS

pairs of each layer (Steurer & Haibach, 1999b; Steurer, 1999a,

2000). In Fig. 11 the electronic and atomic PD in the PAS cell

are represented. For the layer F+, Figs. 11(a), (c) and (e) show

the total electron PD, the atomic PD for TM and the same for

Al, respectively. Analogue representation is given in Figs.

11(b), (d) and (f) for the layer P". To plot the atomic PD, the

coordinates of millions of atomic sites in a 500a-radius circle

were calculated by the cut method from the re®ned AS. The

ungainly shapes result from the oblique projection and from

the action of the �x1; x2� re®ned relaxation shifts for every AS

subregion. However, the fundamental point is that the struc-

tural relationship is effectively strong. The effect of partial site

occupancy is to smooth the contours of the PD. Also relaxa-

tion shifts have their importance (see the TM plots) as they

smooth the PD towards the outside of each AS pair. As a

result, the scattered intensity on the PAS reciprocal lattice

��AV will decrease rapidly at large jqjjj. ��AV in the IMS

perspective is the lattice of the main re¯ections. In fact, it is a

rare®ed subset of the QC's reciprocal lattice, but it collects a

signi®cant fraction (17%) of the total scattered intensity.

2.9.2. QCs as a junction point?. The double structural

relationship (QC±PM phases and QC±VOPAS phases) can be

better understood in terms of the Hume±Rothery effect (see

x4.2). The experimental determination of the pseudogap in the

three types of phases (Belin-FerreÂ et al., 2001) points clearly in

this direction. We will try now to link the structural and

physical comparative analysis. The parameter upon which the

comparison is based is the e/a (valence±electrons per atom)

ratio (Mayou, 1994; Dong et al., 1994; Zhang et al., 1997);

however, the assignment of a valence number to TM is not

univocal and also the position of strong Bragg re¯ections has

to be considered. Ellner et al. (1989) instead use the Norbury

criterion (in terms of Al electron density, e AÊ ÿ3). We chose a

representation in terms of (total and partial for Al) numeric

atomic density versus Al fraction, which is more universal and

anyhow easily amenable to the former. In Fig. 10 this repre-

sentation is given for all known phases in the Al-rich side of

the Al±Co±Ni phase diagram. The reference volume is the �-

AlNi unit-cell volume (a cube of 2.88 AÊ edge). It is evidenced

in the trend followed by the �-phase-related VOPAS phases

(all binary Al±Ni); symbols mark the stoichiometric point of

each phase. Off-stoichiometric alloys have been determined to
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Figure 11
(a) Layer F+: electron density of d-Al70.6Co6.7Ni22.7 averaged in the PAS
unit cell; (b) the same for layer P". (c) Layer F+: average distribution of
TM atoms in the PAS unit cell. The TM atomic sites calculated for d-
Al70.6Co6.7Ni22.7 on a 500a radius circle have been reported as modulo
lattice translations in this unit cell. Site occupancy has been rounded off
to values of 0.25 (yellow), 0.5 (orange), 0.75 (red) and 1 (violet); (d) the
same for layer P". (e) Layer F+: average distribution of Al atoms in the
PAS unit cell. Site occupancy has been rounded off to values of 0.25 (pale
grey), 0.5 (dark grey), 0.75 (azure) and 1 (blue); (f) the same for layer P".
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follow the continuous line with continuity (Bradley & Taylor,

1937a; Ellner et al., 1989). The dotted line extends ideally the

VOPAS behaviour to the d-Al±Ni±Co stability region. Note

that for many other Al-based QCs (with�60±65% Al) there is

no need for an ideal extension, because the two regions are

contiguous. The �1 phase is a unidimensionally quasiperiodic,

vacancy-ordered phase (Chattopadhyay et al., 1987). Also

represented are all the (generally Co-based) PM phases, which

visibly form a separate group. The two d-Al±Ni±Co phases, the

present one and the Edagawa phase (data from Chernikov et

al., 1998), are placed just between the two groups, behaving

coherently with their Co content. This con®rms the concept of

d-QC's as the junction of PM and VOPAS phases.

3. Comparative model analysis

Our structure model for d-Al70.6Co6.7Ni22.7 is the last of a long

series which have been proposed in the course of a decade.

Quite naturally, we need to make a comparative review of all

the former models. We will proceed by (loosely) grouping the

models in different categories, for the sake of clarity.

3.1. Early models

One of the ®rst models proposed for d-Al±Co±Ni is due to

Yamamoto et al. (1990). This model is not strictly comparable

with ours; in fact, it is built for a QC of different composition

(very Co-rich), different space group and different AS struc-

ture (mentioned in x1.3.5) than the one we deal with. Its

experimental veri®cation is insuf®cient (only 49 Bragg

re¯ections have been considered). It would be interesting to

verify this model on a robust data set for Co-rich d-Al±Co±Ni.

A passepartout model has been proposed for d-QC's in

Burkov (1991), modi®ed in Burkov (1993). The interesting

point of these works is the introduction of the concept of

covering, later developed rigorously by Gummelt (1996). The

models in question are, however, fairly inadequate, with many

incorrect basic assumptions. First, they introduce a `universal'

two-AS's con®guration for d-QC's. As can be seen from x1.3.5,

this is a very coarse approach. Then, the AS's construction in

Burkov (1993) is based on the `tiling decoration' method (see

comment in xx2.2 and 3.2). The assumption of a universal

`magic composition' (Al:TM = �:1 or Al62TM38) is clearly

wrong. The model density is 20% too high, creating many

impossibly short distances (2.2 AÊ ). The TM ordering rule ± the

central point ± has been disproven (Zeger et al., 1999; Cock-

ayne & Widom, 1998b). No meaningful experimental

comparison is given in the original works. With our data, both

models give wR ' 0:5 and R ' 0:8 (I>3�I). A substantially

improved version, including statistical mechanics relaxations

(KrajcÏõÂ et al., 2000; MihalkovicÏ et al., 2001) has been compared

with 253 Bragg re¯ections (data from Steurer et al., 1993),

resulting in a not exciting wR � 0:14.

Yamamoto (1996) proposed another model for d-Al±Co±

(Cu,Ni), partly based on electron micrographs by Hiraga et al.

(1994); see also x3.2. It is again a combination of an AS model

with a tile decoration model. No experimental comparison

except electron microscopy is given. With our data, wR ' 0:5
and R ' 0:8 (I>3�I). The tiling (pentagons plus decagons,

adapted from Hiraga et al., 1991, 1994) is peculiar, cf. the

discussion of Kepler's Aa tiling in LuÈ ck (2000). With respect to

the more known Gummelt decagonal cluster, the central part

(decagon) is divided from the external part (ten pentagons)

Fig. 6(b) shows this in detail. The decoration follows the

symmetry of the corresponding polygons. The decagonal

symmetry of the central part is particularly questionable;

recent TEM observations (Abe, Saitoh et al., 2000) deny it,

others (Yan et al., 1998) con®rm it, but only for some clusters.

We do not ®nd a unique cluster; in some cases (see Fig. 6a) the

central part appears more decagonal, in others less, but never

exactly.

Another early model, proposed by some of us (Steurer et

al., 1993), has been elaborated on electron density maps

obtained by maximum-entropy methods, based on only 253

unique Bragg re¯ections. The sample (Al70Co15Ni15) was

actually a superstructure (Steurer & Frey, 1993). Satellites had

not been considered, so the average structure of this phase has

been determined. This turns out to be quite similar to the basic

phase, even if its measured density is larger by 7%. A small

supplementary AS in q � 0 is the main qualitative difference.

The electron density maps agree excellently with our present

results, compare our Figs. 6 and 7 with Figs. 7 and 8 of Steurer

et al. (1993). Dif®culties in the electron density interpretation

and the small number of independent observations (253) have

led to a simpli®ed AS-based structure model. Partial site

occupancies in AS B (there named hyperatom 2) were not

considered. With the original data, this simple model yielded a

rewarding wR � 0:078. Our data set, with many more weak

re¯ections, is much more selective and on the same model it

yields wR ' 0:35 and R ' 0:5 (I>3�I). However, structural

and crystal-chemical considerations are still ± mutatis

mutandis ± valid. The proposed cluster (monopteros) is

Table 5
Comparison with the structure model of Takakura et al. (2001) (model T
in the table).

Here set II is the full synchrotron data set of this paper, reduced in space
group P105/mmc (1544 unique re¯ections); set I is a subset of set II (451
re¯ections with the highest F/�F ratio, approximately corresponding to that
used by Takakura et al. (2001). Model T has been considered `as published'
(only the scale factor and extinction re®ned) and after partial re®nement
(global parameters and all static and dynamic ADP's); re®nement carried out
based on either set I and II. All values are in %.

All re¯ections Restriction to (h1h2h3h40)

R wR R wR

This work
Set I 5.5 5.3 7.2 7.0
Set II 17.0 6.0 14.5 7.7

Model T: `as published'
Set I 12.2 12.5 10.0 10.5
Set II 30.1 25.3 28.7 24.5
Model T: after re®nement based on set I
Set I 8.8 9.1 10.2 12.9
Set II 34.9 30.3 37.5 38.8
Model T: after re®nement based on set II
Set I 8.8 9.1 10.2 12.9
Set II 24.6 19.6 25.7 23.8



compatible with the 20 AÊ diameter decagon widely discussed

afterwards (see x3.2.2). Cluster overlap was not considered;

however, careful inspection of Figs. 8 and 12 of Steurer et al.

(1993) shows clearly that overlapping clusters are present.

They were not recognized because of slight differences in the

atomic decoration of different clusters, in agreement with the

present work. An interesting variation of this model (Elcoro et

al., 1995) has been presented, which uses symmetry-adapted

functions to describe the AS's (see x2.7).

3.2. Electron-microscopy-based models

3.2.1. General remark. The great limiting factor of electron

microscopy (EM), when compared with XRD, is the lower

resolution. Only recently, by employing new methods such as

high-angle annular dark-®eld (HAADF) electron microscopy,

the point resolution could be lowered to 1 AÊ ; XRD still offers

an improvement of an order of magnitude. Fig. 6(a) shows

clearly the consequences. Complex patterns of partly occupied

atomic sites are lost. The electron density is simpli®ed; its

peaks are irregular and the assignment of atoms to them is

neither simple nor univocal. TM atoms are generally well

visible, while the majority of Al sites (also scarcely populated)

are not.7 This is one reason for the proliferation of slightly

different structure models for d-Al±Co±Ni. Furthermore, only

the projected structure (usually on the quasiperiodic plane)

can be seen by electron microscope. The separation of two

screw-related atomic layers is possible, but the ®ne details of

the three-dimensional structure and the 8 AÊ superstructure

are invisible.

No EM-based analysis could address a structure solution as

detailed as this study. Many contain excellent analyses. The

error of simplifying the atomic structure as the decoration of

one (or few) cluster or tile(s) is generalized. The cluster

decoration plus the tiling rule are always presented. In the few

cases in which the authors also give a ®ve-dimensional

representation we could make comparative re®nement. The

best result was the model from Saitoh et al. (1998), with

wR � 0:317, R � 0:372 on 2287 re¯ections (F>�F). This is

about the best result possible for a deterministic model

(without partial site occupancy); the shape and composition of

the AS's is about correct, even a small TM region in the centre

of B has been determined. It is similar to our model in

Cervellino et al. (2000), the best result we had with ideal QC

models.

The simplicity of the electron density in low resolution is

not only, however, a cause of trouble for EM analysis. It is

signi®cant for the interaction of electron waves with wave-

length�1 AÊ (typical for states near and below the Fermi level;

Mayou, 1994; Dong et al., 1994) with the crystal structure. This

in turn is important to understand the stability of QCs and the

mechanism of creation of long-range quasiperiodic order.

3.2.2. Model discussion. Many EM models are based on the

composition Al72Co8Ni20, very close to our sample and plau-

sibly exactly the same structure (basic decagonal phase).

Others regard a composition with 15 at.% Co, which is the

Edagawa superstructure. On the level of accuracy of EM, the

average structures likely coincide, so we will not stress the

difference. Useful hints about the Edagawa superstructure

ordering are given in Saitoh, Tsuda & Tanaka (1997), Hiraga

et al. (2000) and Hiraga et al. (2001). The detailed structure

solution of the Edagawa superstructure will be our next effort.

Hiraga et al. (1991) ®rst identi®ed the regular arrangement

of 20 AÊ diameter decagonal columnar clusters which has been

the basis of most subsequent analyses on d-Al±Co±Ni. The

decagon cluster is decomposed in a smaller decagon

surrounded by pentagons, to justify the cluster linkage. The

clusters are linked by contact or by overlap of type A (see

xA2.1). These rules (which correspond to the A and B overlap

rules of Gummelt, 1996, applied to �-in¯ated decagons) are

the basis of several other works (Burkov, 1991, 1993; Yama-

moto, 1996). The atomic decoration they proposed and that

developed in Hiraga et al. (1994) was also considered by other

authors (Burkov, 1991; Yamamoto et al., 1990; Burkov, 1993;

Yamamoto, 1996). The poor resolution available at the time

(>2 AÊ ) accounts for its gross inadequacies. Remarkable,

however, in Hiraga et al. (1994) is the identi®cation of a PPT[1]

as the structure framework, agreeing with our correlation

analysis (x1.3.3). An improved version of this model (Hiraga et

al., 2000, 2001) has been obtained with better techniques (1 AÊ

resolution). The TM and Al arrangements are (within the EM

limitations) mostly correct, except the cluster centre, where it

is proposed an unreasonable alternance of pure Al and pure

TM pentagons on the two layers. This would severely break

the 105 (pseudo)symmetry and the observed h5 � 2n� 1

extinction.

Tsuda et al. (1996) opened the discussion on the symmetry

of the basic 20 AÊ diameter cluster. The cluster symmetry is

proposed for the ®rst time to be pentagonal rather than

decagonal. The global arrangement of pentagonal clusters is

proposed as the reason for the different space groups

(P105=m mc, P10m2, we add P105=m) observed in different d-

Al±Co±Ni phases. This line of thought was developed in

Saitoh, Tsuda & Tanaka (1997) and Saitoh, Tsuda, Tanaka,

Kaneko et al. (1997). Subsequent works (Steinhardt et al.,

1998; Abe, Saitoh et al., 2000) reduced further the cluster

symmetry to m (in connection with the overlap rules of

Gummelt, 1996), while other works (Yan et al., 1998; Yan &

Pennycook, 1999, 2000, 2001) prefer to consider a decagonal

cluster, whose decoration may happen to be locally different

due to disorder. We con®rm the low symmetry (1) of the 20 AÊ

diameter cluster and also the existence of several slightly

different variants. The cluster arrangement gives rise to the

global (pseudo)space group P105=m mc, slightly broken into

P105=m (or better P10). The variant clusters are intrinsic in

our AS's solution, disorder does not come into question. Let

us imagine the decagonal cluster divided into rings, starting

from the centre. The atomic decoration of each ring is decided

by the overlap of the AS de®ning the cluster centres (CCAS

hereafter; see x1.3.3) with the AS's A, B, A0, B0 which de®ne

the atomic structure. The overlap geometry depends on their
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physical space distance; for each ring we must consider a

distance equal to its radius r. For the ®rst two rings (r = 1.5 and

2.4 AÊ ) the CCAS centre falls on the points marked with G on

B, A, respectively, for the two rings. We consider the two rings

together because they constitute split positions only 0.9 AÊ

apart; recall the squashed pentagons of Saitoh, Yokosawa et al.

(1999). The G points, located at ar=�
2 (ar=�) from the AS A

(B) centre, are important branching points of the AS's

decoration. Depending on the position of each cluster centre

in the CCAS, these rings will contain different mixtures of Al

or TM, from AS A or B. The dogma of the unicity of the

covering cluster (Steinhardt et al., 1998; Abe, Saitoh et al.,

2000) has to be reconsidered. However, this feature is not

necessary by any point of view; overlap rules and energetic

considerations are well compatible with a ®nite number of

slightly different clusters as well, which is a more general

situation. Of course, the complication of building a multiple-

cluster decoration model is enormous, surpassing greatly the

AS's modelling method. The actual cluster arrangement, likely

more complex than the Penrose tiling, has also to be deter-

mined case by case. The structural complexity of d-QC's

requires a heavy tribute.

A remark about the large occupational/chemical disorder of

our model and the possibility to investigate, by EM, its rela-

tion to the actual atomic structure is needed. By XRD we can

only see the global three-dimensional statistical structure

averaged on the coherent volume. For this QC, the unstruc-

tured nature of the diffuse scattering in the quasiperiodic

planes indicates only short-range correlations therein (within

the atomic bond length). In general, short-range order and

thermal diffuse scattering can also explain curious diffraction

features at the Bragg peak foot (Abe, Tamura et al., 2000). The

semi-integer diffuse layers are explained by our superstructure

model. It is possible to hypothesize longer-range vertical8

correlations inside each columnar cluster, giving rise to three-

dimensional extended diffuse phenomena, too weak for XRD

observation. On the other side, EM is a local probing tech-

nique, but it always averages the structure in the periodic

direction on many atomic layers. EM could detect local cluster

structures, stemming from intemediate-range vertical corre-

lations, only on the limit in which the analyzed vertical

thickness is smaller than the relevant correlation length.

Vertically uncorrelated disorder would remain unresolved,

unless single atomic layers could be probed.

A few words are also needed regarding the atomic

decoration of the clusters. Models (Hiraga et al., 1991, 1994;

Tsuda et al., 1996; Saitoh, Tsuda & Tanaka, 1997; Steinhardt et

al., 1998) based on lower-resolution EM images (�2 AÊ ) do not

generally even approximate correctly the TM distribution.

Much better results in this sense are obtained by the HAADF

method (resolution of �2 AÊ ). Saitoh, Tsuda, Tanaka, Kaneko

& Tsai (1997) and Saitoh et al. (1998) ®rst found some TM in

the AS B. The result is remarkable because it was previously

assumed that AS B contained only Al. They exceed, however,

quantitatively, not considering partial and mixed Al/TM

occupancy, and especially assuming symmetry 5m for AS B,

while the Al/TM partition reduces the symmetry to 5. In Yan

& Pennycook (1999), apart from the observation of different

clusters, the improved resolution allowed for the ®rst time to

resolve closely spaced TM columns on the outer periphery of

the 20 AÊ diameter cluster. These correspond to TM zigzag

chains, suggested by Cockayne & Widom (1998b), which we

can con®rm (cf. x2.7). The most recent model (Yan &

Pennycook, 2001) determines fairly well many TM positions

and the analysis of the situation in the central rings (r < 2.5 AÊ )

is fairly accurate, even though still a bit too simpli®ed. TM in

AS B (discussed in relation to Saitoh, Tsuda, Tanaka, Kaneko

& Tsai, 1997; Saitoh et al., 1998) is neglected; it should be

found in the third ring (r = 3.9 AÊ ). Also the number of possible

Al sites is too small and fractional/mixed occupancy is

neglected outside the ®rst two rings.

Finally, we would like to note that in some works (Saitoh,

Tsuda, Tanaka, Kaneko & Tsai, 1997; Saitoh et al., 1998; Yan

& Pennycook, 2000) the interpretation of the EM images is

aided by considering selected structural features from known

approximants (PM phases). This is performed in a proper way,

disregarding features which are little compatible with the QC

structure (see x1.3.5). The results, accordingly, are quite good.

The basic similarity between the local structure of QCs and

approximants (Steurer, 2001b) is also con®rmed by our

analysis, when due consideration is paid to occupational

disorder and to the effects of different TM chemistry.

3.3. The latest structure model

While this manuscript was under review, we learnt of the

structure model by Takakura et al. (2001). It represents an

admirable piece of work, whose only limit is the data set.

Performing the data collection by a normal rotating-anode

instrument limits the set of observable re¯ections to those with

the highest signal-to-noise ratio. Furthermore, the precision of

the data is also smaller. In fact, they used 349 unique re¯ec-

tions (P105=m mc) for re®ning. Their results are quite good

and they mostly compare fairly well with ours. However, due

mainly to limitations of the data set, they fail to reveal many

interesting details. Another smaller shortcoming is the small

extension of the AS's, which introduces systematic errors in

the positioning of a minority of sites.

The ®rst macroscopic incongruence in their model is the

incorrect value of the crystal density. The value 4.12 Mg mÿ3 is

5% higher than that measured (3.94 � 2%). We have already

discussed (see x2.6.1) how the measured value cannot be

underestimated. On the other side, we have also veri®ed that

the crystal density is not easily estimated by re®nement, owing

to correlations. In fact, it has to be constrained to the

measured value and the constraint can only be released in the

®nal stages (we put the limit to wR< 12% on our data set).

Takakura et al. (2001) used an elastic constraint (a penalty

function). This, combined with the limitations of the data set

and with the smaller extension of their initial AS's, made

obtaining the correct result impossible.8 Vertical means along the periodic direction.



There is also a small difference in the samples. Apart from

the slightly different composition, their sample does not

apparently show an 8 AÊ modulation.

To compare in a thorough way the two resulting models, we

performed a differential re®nement with their structure model

using our data set (reduced in P105=m mc). The full data set

(set II) contains 1544 unique re¯ections. We also considered

the subset (set I) of the 451 re¯ections with the highest signal-

to-noise ratio. The results are listed in Table 5. To account for

the possible difference regarding the 8 AÊ superstructure, we

also give separately the values of the statistical indicators (R,

wR) restricted to re¯ections with h5 � 0, which are insensitive

to it. Results for our model are reported for comparison. The

model of Takakura et al. (2001) `as published' (only scale

factor re®ned) gives results which are even much worse than

the published values. To account for the possible variation of

sample- and experiment-dependent parameters, we also tried

to re®ne the global parameters, and the static and dynamic

ADPs. We proceeded with separate re®nements based on sets

I and II. It is worth noticing that both re®nements end with the

same values restricted to set I. However, after re®nement

based on set I, the statistical indicators on set II are not good.

This indicates that set I is too limited to possibly ®nd an

accurate structure solution. In every case, however, our model

shows a remarkably better quality. As the re¯ections with

h5 � 0 behave quite similarly to the general re¯ections, we can

also say that the effect of the 8 AÊ modulation is not relevant at

this level.

4. Discussion and conclusions

Let us recall an obvious fact: d-QC's are three-dimensional.

Additional dimensions play the role of order parameters, but

the physical reasons for their stability have to be determined

in physical space. We have already pointed out (Steurer &

Cervellino, 2001) how quasiperiodic planes merge in three

dimensions creating oblique net planes. We subscribe to the

idea that no substantial physical±structural differences

between decagonal and icosahedral phases should exist. In

fact, while the electronic transport properties along the peri-

odic axis are very different, due to a slight deformation of the

Brillouin zone, mechanical properties also show strong three-

dimensional isotropy (Chernikov et al., 1998). The structural

relationship with different periodic phases should also be

common. We will articulate the discussion on two ordering

length scales, for local order (�20 AÊ , as the atomic motifs) and

for long-range order (the coherence length).

4.1. On the stability of the decagonal phase: local ordering

What can we learn from the structure analysis about the

stabilization of d-QC's? First of all, consider local ordering. A

basic cluster, statistically de®ned and not exactly unique, does

exist and its structure recalls the atomic motifs found in PM

phases, with one important difference in the stacking layers

(see xx1.3.5 and 2.8). The cluster (columnar) is strongly

disordered. This has the effect of increasing the con®guration

entropy, which in the ®rst approximation9 we can estimate (see

BertheÂ, 1995, for the algorithm) to be superior to

2 J molÿ1 Kÿ1. For comparison, in metallic glasses entropy is

typically R/3 ' 2.7 J molÿ1 Kÿ1 (Antonione et al., 1990;

Garrone & Battezzati, 1985). A compensating effect is to

decrease the binding energy, the combined effect being

however positive. The high thermodynamic equilibrium

temperature accounts for both these effects. Can this kind of

local ordering explain the observed ideal quasiperiodic long-

range order? Jeong & Steinhardt (1997) explain it in terms of

the density of energetically favourable clusters, but the same

concept applies equally well to random HBS tilings (Cockayne

& MihalkovicÏ, 1999) and close-packed periodic structures;

furthermore, this hypothesis is hard to match with plausible

growth mechanisms. Our structure analysis evidences the

variability and the disordered nature of the basic cluster;

therefore, we cannot imagine a local interaction (the one

which holds a cluster together) being responsible for long-

range order.

4.2. On the stability of the decagonal phase: long-range order

The cluster(s) structure is very complex and variant. In low

resolution (Fig. 6a) it appears simpler. This means also that

long-wavelength free electrons would `see' a simpler structure.

Free electrons are rarely considered in relation to QCs.

Generally, in solid-state physics free electrons are considered

to be the ideal mediators of long-range interactions. A long-

range electronic contribution to the total energy in QCs has

appealing features. In fact, such a term would be compatible

with the observed growth and ordering mechanism, because

QCs always need long periods of annealing to achieve their

best ordered state. QCs as-cast contain a disordered

arrangement of clusters, which are stable; these order quasi-

periodically only after annealing. Plausibly this electronic

long-range energy term (similar to that involved in the

modulation of IMS) may step in gradually when passing

through an increasing series of LUC approximants, converging

on the quasicrystal. This would also explain the phase rela-

tionship of QC and LUC approximants (see x1.1.1).

We clari®ed beyond doubt that the cluster arrangement is

ideally quasiperiodic, perhaps a bit more complex than a

simple Penrose tiling. The long-range perfect correlation is

con®rmed by the absence of either phasonic diffuse scattering

at the Bragg peak foot or linear phason strain (Abe, Matsuo et

al., 2000). It is true that long-range correlation is necessary and

not suf®cient to infer long-range interactions. However, we

can see that short-range ordering is highly imperfect. There-

fore, it is dif®cult to suppose that short-range interatomic

interactions alone can be the stabilizing force for this struc-

ture.

Electron-band effects play a central role in metallic

compounds. The Hume±Rothery effect (Mayou, 1994), in

Acta Cryst. (2002). B58, 8±33 Cervellino et al. � Decagonal Al±Co±Ni phase 27

research papers

9 Considering only negative occupancy correlations due to too short distances;
positive correlations ± AlÐTM bonds, TM±TM correlations, recently clari®ed
(Zaharko et al., 2001) ± are also present, but not easily quanti®able, so the
exact value might be slightly smaller.



research papers

28 Cervellino et al. � Decagonal Al±Co±Ni phase Acta Cryst. (2002). B58, 8±33

particular, seems to be particularly important in intermetallics,

either disordered, periodic or quasiperiodic. This effect

consists of the creation of pseudogaps at the Fermi energy due

to the structural diffraction of electrons. Long-range order

plausibly plays a role in this respect, as a pseudogap can be

deepened and broadened when the corresponding diffraction

peak is sharper and stronger. However, the effect can also be

augmented by Al s; p-TM d hybridization (Mayou, 1994) and

this is more related to the local coordination (Muller et al.,

1998). Remarkably, both PM and VOPAS approximants are

generally understood as Hume±Rothery systems (see also

x2.9.2). For d-Al±Co±Ni, existing theoretical calculations,

which do not con®rm the Hume±Rothery effect, of the elec-

tronic structure have been based on inadequate models

(mainly Burkov's) and the results (KrajcÏõÂ & Hafner, 1998;

KrajcÏõÂ et al., 2000) are, admittedly, unreliable. From the

experimental side, the Hume±Rothery pseudogap has been

con®rmed for many QCs, d-Al±Co±Ni included (see Belin-

FerreÂ et al., 1996, 2001; Mizutani et al., 2001, and references

therein). Isotropic soft X-ray emission/absorption spectro-

scopy (SXES, SXAS; Belin-FerreÂ et al., 1996, 2001) con®rm a

marked pseudogap at the Fermi level in d-Al±Co±Ni. In

particular, Al s; p bands are pushed away from the Fermi level

on both sides. The shape of the DOS curves also clearly

indicates Al s; p±TM d hybridization. The role of the local

coordination seems con®rmed, together with the effect of

long-range order. Little can be said about the extended or

localized character of electron states, except what is inferred

by the DOS shape comparison. The isotropic averaging mixes

periodic and quasiperiodic directions, ruling out comparison.

A recent angle-resolved X-ray photoemission study (Roten-

berg et al., 2000) on the basic Ni-rich d-Al±Co±Ni phase

unequivocably determined the existence of free electron-like

s; p bands 3±8.5 eV below the Fermi level, with a broad

parabolic dispersion corresponding to an effective mass of

0.9 me. This feature holds for both periodic and quasiperiodic

directions. Interestingly, the same feature is found ± by both

experiment and theoretical calculations ± in �-AlNi (Muller et

al., 1998).

The absence of translational symmetry in three-dimensional

space makes it dif®cult to apply Bloch's theorem to quasi-

periodic systems. In periodic systems, Bloch waves are de®ned

as (Ashcroft & Mermin, 1976b; Mayou, 1994; Rotenberg et al.,

2000)

	k�r� � uk�r�e2�ikr �1�
where uk�r� is periodic as the direct lattice �, hence it can be

expanded as a Fourier series on the reciprocal lattice ��

uk�r� �
X

h2��
ck;he2�ihr: �2�

Quasiperiodic systems can be described as periodic in the

embedding space. Then, with a few tricks (as nullifying the

kinetic energy in E? by introducing an inverse mass tensor

with zero components in E?), the above considerations can

also be applied to QC. The wavefunctions of (1) shall be

interpreted as sections parallel to E?, while the moments k, h

shall be projected. However, qualitative interpretation of

solutions such as those in (2) is not simple. In fact, the reci-

procal lattice �� is dense in physical reciprocal space. This has

led to the hypothesis of critically localized waves, in agreement

with the picture of QCs as intermediate between periodic and

random systems. In the latter, in fact, the reciprocal lattice

spreads to a continuum and electrons are strongly localized.

However, extended states (or the extended-like character of

some critical states) have not been ruled out, especially for

three-dimensional QC's (for a short review, see Zijlstra &

Janssen, 2000; MaciaÂ , 1999; Rieth & Schreiber, 1998; Huang &

Gong, 1998; Kohmoto & Banavar, 1986; Vidal et al., 1999;

Avishai & Berend, 1991, and references therein). Another

failure of the present theory of QC electrons regards the

functional character of the DOS; while the prediction is that of

a very spiky DOS, with a dense set of gaps, experiment again

(Stadnik et al., 1997; Stadnik, 2001) shows a more traditional

absolutely continuous DOS.

Let us try to understand the meaning, in this context, of the

QC±VOPAS phase structural relationship. In real QCs,

particularly in that presently studied, the intensity distribu-

tions on the reciprocal lattice are concentrated in a small

subset of strong re¯ections, with many very weak ones. The

re®nement of the AS's shows so many partial occupancy

subregions because the re¯ected intensity drops rapidly with

increasing length of the scattering vector in perpendicular

space. This drop is much faster than what would be for an ideal

QC without partial occupancy.10 The magnitude of the coef-

®cients in (2) is related to the intensity of the relevant Bragg

peaks, as far as the pseudopotential magnitude is related to the

electron density (Mayou, 1994). This recovers discreteness in

the broader meaning of intensity±weighted discreteness.

Furthermore, imagine restricting the sum in (2) to the reci-

procal lattice ��AV of the PAS, which is an actual discrete

subset of the QC's reciprocal lattice (see xA3) with a high

relative intensity fraction (see x2.9.1).

We have already pointed out (Steurer & Cervellino, 2001)

the importance of two equivalent properties of ideal quasi-

periodic order, namely the existence of an average periodic

structure (Steurer & Haibach, 1999b) and MasaÂkovaÂ 's binary

in¯ation (see MasaÂkovaÂ et al., 2000, and references therein).

The latter property seems to be the ideal candidate to replace

translational invariance in a reformulation of Bloch's theorem,

possibly also developing the concept of `cluster electrons' put

forth by Janot & de Boissieu (1994). Incidentally, this property

is only valid for structures having 5-, 8-, 10- or 12-fold axes as

noncrystallographic symmetry elements. This covers all the

experimentally found quasicrystals and would explain why

other exotic symmetries might not be realised.

In conclusion, our structure analysis, beyond the (expected)

determination of many common physical and structural

features between periodic and aperiodic Al±TM systems,

points out the likelihood of a speci®c, electronic long-range

10 Note that the fractality of the atomic surfaces, characteristic of random tiling
models (de Boissieu et al., 1994), would have the opposite effect, spreading the
intensity on higher perpendicular space scattering vectors, resulting in a
substantially continuous spectrum rather than a substantially discrete one.



energy term causing long-range ideal aperiodic order. We

hope to stimulate a deeper theoretical investigation of this

phenomenon.

APPENDIX A
Theoretical formalism

A1. Five-dimensional embedding of decagonal quasicrystals

Decagonal quasicrystals can be embedded in a ®ve-dimen-

sional superspace. With respect to the space group, and in

particular to the ®vefold rotations, this space admits an

orthogonal invariant decomposition as a direct sum of the two-

dimensional quasiperiodic plane EQ� the two-dimensional

perpendicular (internal) space E?� the one-dimensional

decagonal axis Ez. The physical (external, parallel) three-

dimensional space Ejj is the direct sum EQ � Ez. The four-

dimensional space E0 will be the direct sum of EQ � E?. The

arbitrary length scale factor for E? is set to 1. We will use

coordinates in a Cartesian reference, or V-basis (Steurer &

Haibach, 1999a), so rV � �x1; x2; x3; x4; x5�V, where x1; x2 run

in EQ, x3 in Ez, x4; x5 in E?.When convenient, we may use the

adimensional coordinates

x � x1=a;

y � x2=a;

z � x3=c;

x? � x4=a;

y? � x5=a;

where a and c are the quasicrystal metric parameters. The

coordinates with respect to the ®ve-dimensional unit-cell-

de®ning vectors di, i � 1 . . . 5 (D-basis, crystal basis) will be

denoted instead by a subscript D. The di vectors in the stan-

dard embedding are de®ned in Steurer & Haibach (1999a),

equation (3.35). Their V components are the columns of the

matrix

DV � a

5

ÿ�2 ÿ�2�2 ÿ�2�2 ÿ�2 0

�� � ÿ� ÿ�� 0

0 0 0 0 5c=a

ÿ�2�2 ÿ�2 ÿ�2 ÿ�2�2 0

ÿ� �� ÿ�� � 0

����������

����������
; �3�

where � � �1� 51=2�=2 is the golden mean (a Pisot number)

and � � �3ÿ ��1=2 is another algebraic (non-Pisot) number,

introduced to simplify the notation; they satisfy

�2 ÿ � ÿ 1 � 0, �4 ÿ 5�2 � 5 � 0 and 51=2 � ��2. Note that

d5 2 Ez; E0 � EQ � E? � span di; i � 1 . . . 4� �. Their lengths

and internal angles are dj � 2a=51=2, j � 1 . . . 4; d5 � c;

�ij � 60�, �i5 � 90�, i; j � 1; . . . 4. In the �n-embedding, the di

can be calculated from the former by the integer-valued matrix

Sn
0 (see de®nition in Janner, 1992). This corresponds to

multiplying by �n their EQ components, by �ÿ1=��n their E?

components and leaving invariant the Ez component.

The ®ve-dimensional unit-cell volume will be

Vc � det�DV��� �� � 4a4c�51=2�=25:

To determine the atomic coordinates in physical space, we use

the concept of atomic surface (AS). An AS is a polytope

extended parallel to E?, which supports a probability density.

The simplest QC models have one AS per ®ve-dimensional

unit cell, centred in the origin and with the corresponding site

symmetry. In every point where one AS intersects physical

space, we will ®nd an atom with a certain probability, which is

the corresponding value of the probability density on the AS.

The atomic con®gurations thus obtained reproduce the

observed QC Bragg peaks' pattern. Furthermore, every AS

(or any of the subregions in which it may be subdivided) is

biunivocally associated to a Delone set of (probable) atomic

sites.

More complex QC's (as in the present one) have more AS's

per unit cell. To keep the diffraction pattern geometry

constant, the AS centres must be on a sublattice of the ®ve-

dimensional lattice. The most common case is a sublattice of

index 5� n (n being the number of atomic layers per z-

translation period). For each atomic layer, consider the four-

dimensional section of the unit cell at x3 � zc � const. Five

sublattice nodes are on the ®fths of its main body diagonal,

with coordinates �q=5; q=5; q=5; q=5; z�D, for q � 0 . . . 4. We

will label the AS's by the pair �q; z�. The sublattice nodes (and

hence the possible AS centres) all belong to the Harker

section �D;Z�, Z denoting the translation period

�0; 0; 0; 0; 1�D � �0; 0; c; 0; 0�V and D the four-dimensional

diagonal �1; 1; 1; 1; 0�D.

The QC's atomic point density can be simply calculated as

(Steurer & Haibach, 1999a)

na � �SAS=Vc� � �5�51=2�SAS�=4a4c;

where SAS is the total area of the atomic surfaces in one unit

cell.

A2. Simple tilings and coverings

A2.1. Deterministic tilings. We will henceforth recall a few

basic concepts about tilings and coverings, as they are often

used for QC structure modelling. We will use their higher-

dimensional representation in the above-de®ned standard

embedding. However, as the x3 coordinate is not important,

we will refer to the four-dimensional space obtained by

projecting along x3.

We will particularly discuss Penrose tilings (Penrose, 1974,

1990) in the pentagonal representation (PPT[m]) and in the

rhombic representation (RPT[m]). Index m refers to the

scaling by �m with respect to a ®xed reference. GruÈ nbaum &

Shepard (1976) can be consulted for the geometric details and

relations to other representations of Penrose tilings. Other

tiling geometries which deserve discussion are the HBS tiling

and the Gummelt decagon covering (GDC). For the discussion

it is useful to de®ne the length ar � 2a�=5.

RPT[m] is generated by four pentagonal AS's in

q � 1; 2; 3; 4. Two of them have radius11 ar�
ÿm, the other two

have radius ar�
ÿmÿ1. Details about orientation and disposition
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of the AS's are found in Steurer & Haibach (1999a, 2001).

Accordingly, the resulting tiles have edge length ar�
m. Two tile

shapes (fat rhomb, thin rhomb) are present.

Instead, PPT[n] is generated by a single AS in q = 0 (Niizeki,

1989a,b), having decagonal shape, one vertex of the decagon

lying on the x5 axis. For a decagon radius of �ar�
ÿn we have a

tile edge length of �ar�
n. Four tile shapes (pentagon, star, boat,

rhomb) are present. These two tilings can be easily mapped

onto each other (GruÈ nbaum & Shephard, 1976; Niizeki,

1989a,b).

Well known is the Gummelt decagon covering GDC[n]

(Gummelt, 1996; Jeong & Steinhardt, 1997; Kramer, 1999).

The term `covering' means that the decagonal tiles are allowed

to overlap. GDC[n] is composed of decagons of radius ar�
n,

with one vertex along the x1 direction from the centre. Two

decagons may be in contact, sharing an edge, with centre-to-

centre distance �ar�
n�1. Alternatively they overlap in two

ways: overlap A, with centre-to-centre distance �ar�
n; overlap

B, with centre-to-centre distance �ar�
nÿ1. The overlap A (B)

distances correspond to the Ejj-projected lengths of the d2; d3

(d1; d4) vectors, respectively, in the �n embedding. The original

construction of GDC[n] started from RPT[nÿ 2] (Gummelt,

1996; Kramer, 1999). The centres of the decagons result to

form PPT[n] (Gummelt & Bandt, 2000). The frequently

observed decagonal clusters in d-QC's always have a radius of

�10 AÊ , corresponding to a value of n � 3.

The AS's de®ning RPT/PPT/GDC can be slightly modi®ed

without altering the basic properties of the tiling, only the

frequency and distribution of the different tiles will change.

An example with a PPT is reported in Niizeki (1993); more

general RPT modi®cations are given in Pavlovitch & KleÂman

(1987). Of course, the complexity of the pattern will be

increasing. However, the number of degrees of freedom (local

con®gurations) remains limited, when and only when the

geometric parameters de®ning the AS's remain limited. We

can use this property to de®ne a class of tilings, the general

regular pentagonal tilings (GRPTs). This class can be thought

of as independent of the chosen geometric representation (set

of tiles), provided that a Penrose tiling can be built on it.

A word about the HBS tilings. They constitute one of the

many geometric representations of Penrose tiling (Gummelt

& Bandt, 2000; Wittmann, 1999; Cockayne & Widom, 1998b).

However, the HBS representation is very useful to compare d-

QC's with PM phases (Steurer, 2001b). Furthermore, it has

attractive properties for the study of random tilings and

quasiperiodic dense packing (Gummelt & Bandt, 2000;

Cockayne & MihalkovicÏ, 1999; Cockayne & Widom, 1998a).

A2.2. Random tilings. Up to now we have mostly discussed

ideal, or deterministic, tilings. These were always possibly

de®ned by a small number of free parameters, e.g. those

de®ning the generating AS's. Random tilings (RTs) have been

designed for the purpose of increasing the number of statis-

tical degrees of freedom so as to generate large canonical

ensembles and consequently a desirably high con®gurational

entropy, by randomizing the spatial disposition of the tiles.

Note that this is the only possibility for a tiling meant as a

geometric object and also when the atomic decoration of the

tiles is constant and deterministic. In real QCs the latter

assumptions do not hold, as shown in this work. Consequently,

entropy can be effectively introduced on the decoration level.

Compare with three-dimensional periodic crystals, where it is

more common to have (occupational, chemical, displacive)

disorder in the unit cell than a disordered arrangement of unit

cells.

The term `random tiling' is often used with very broad and

different meanings. We shall use a restrictive de®nition.

First of all, we refer to RT's only in a strict sense (Henley,

1991). In fact, it is improper to refer to RT's in the afore-

mentioned situation, when perfect quasiperiodicity is

combined with disorder on the atomic level. These cases are

described by a `well behaved' probability density in the n-

dimensional unit cell. By `well behaved' we mean that

(i) the distribution is constant or smoothly variable, or

however (piecewise) absolutely continuous, and

(ii) that its support (the set of AS's) is (piecewise) compact

and connected.

Secondly, we shall consider RT's only when quantitatively

necessary. We will not refer to RT's in cases that can be seen as

a perturbation of an ideally quasiperiodic tiling (de Boissieu et

al., 1994). This perturbative effect on Bragg re¯ection inten-

sities is simply dealt with by the introduction of a phasonic

thermal factor, a small width convoluted Gaussian smearing

the probability density on the AS's; complementarily, in some

cases (Abe, Tamura et al., 2000) weak phasonic diffuse scat-

tering wings around the zone axis of strong Bragg re¯ections

can be observed. Conversely, when this perturbative approach

might not hold (Henley et al., 2000), a RT-theoretical approach

is convenient.

RTs may be characterized by fractal AS's (de Boissieu et al.,

1994) in direct space; however, it is more interesting to char-

acterize them by diffractivity. The diffraction pattern of any

object can be divided in absolutely continuous part, singular

continuous part and discrete (Bragg) part.12 It has never been

demonstrated that an RT may have a discrete diffraction part

(Lagarias, 1999a,b; Baake & Moody, 1998); they typically show

singular continuous diffraction (Tang & JaricÂ, 1990; Tang,

1990).

A2.3. CsCl-type periodic average structure. The relation

between d-QC and a CsCl-type PAS is described extensively in

Steurer (1999a). As physical three-dimensional space Ejj is the

reference for this section, we will keep the notation coherent

with the ®ve-dimensional setting, but the �x4; x5� coordinates

(V-basis) will be simply omitted, while the D-basis vectors

(hereafter in the standard embedding for simplicity) will be

assumed to be projected onto Ejj. The CsCl-type unit cell can

be reported to be a C-centred orthorhombic setting taking as

primitive the vectors [100], [011], [011] of the cubic lattice. By

12 A robust characterization of Bragg peaks (Landau & Lifshitz, 1960) is the
ratio maximum intensity:integral intensity, which increases as V

2=3
coh (Vcoh being

the coherent volume). Singular continuous spectral features show a much
slower increase, or a decrease, of this ratio. While for the ®rst QC's confusion
was possible due to very small Vcoh, QC's sample quality is presently on the
level of good periodic crystals (Haibach et al., 2000). The spectral
characterization is therefore quite solid.



a further slight distortion of the thus obtained orthorhombic

cell we obtain the PAS primitive vectors

aAV � �2a=�2� 1; 0; 0� �V;

bAV � �2a=��� 0; 1; 0� �V;

cAV � c 0; 0; 1� �V; �4�
with aAV = 2.870, bAV = 3.950, cAV � c = 4.0855 AÊ . The unit-

cell volume is VAV � 46:315 AÊ 3 or 2� V0, where V0 is the

volume of a cubic cell with lattice parameter a0 = 2.850 AÊ . For

comparison, the �-AlNi cubic cell has lattice parameter 2.88 AÊ

(Bradley & Taylor, 1937a). The reciprocal vectors are

a�AV � a���2=2; 0; 0�V � 1
2 �1; 2; 2; 1; 0�D;

b�AV � a��0; ��=2; 0�V � 1
2 �1; 0; 0; 1; 0�D;

c�AV � c��0; 0; 1�V � �00001�D; �5�
as can be easily veri®ed by (3). Due to the re¯ection condition

hkl: h� k � 2n for the C-centring, the non-extinct part ��AV

of the PAS reciprocal lattice is a proper discrete subset of the

(Ejj-projected) d-QC reciprocal lattice ��QC.

The QC's periodic average structure is characterized (in the

PAS unit cell) by the average electron density

�AV�r� � lim
M!�1

XM

m;n�ÿM

�QC r�maAV � nbAV� �
�2M � 1�2

� �QC r� � ? lim
M!�1

XM

m;n�ÿM

� r�maAV � nbAV� �
�2M � 1�2 ; �6�

where ? represents convolution. Accordingly, using elemen-

tary Fourier transform algebra, it is easy to see that the PAS's

structure factors are exactly the subset of the QC's structure

factors FQC
h with h 2 ��AV � ��QC.

APPENDIX B
Acronyms explanation

ADP ± atomic displacement parameter

AS ± atomic surface

CCAS ± cluster-centre-de®ning atomic surface

EM ± electron microscopy

GDC[n] ± Gummelt decagon covering (scale �n)

HAADF ± high-angle annular dark ®eld

HBS ± hexagon±boat±star tiling

HRTEM ± high-resolution transmission electron micro-

scopy

LUC phase ± large unit-cell phase

PAS ± periodic average structure

PBP ± pentagonal bipyramid

PD ± probability density

PM phase ± pentagonal motif phase

PPT[n] ± pentagonal penrose tiling (scale �n)

QC ± quasicrystal

RPT[n] ± rhombic penrose tiling (scale �n)

RT ± random tiling

TEM ± transmission electrom microscopy

TM ± transition metal

VOPAS phase ± vacancy-ordered periodic-average-struc-

ture phase

XRD ± X-ray diffraction
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